Свойства функции игрек равен синус икс. Синус (sin x) и косинус (cos x) – свойства, графики, формулы

ГРАФИКИ ФУНКЦИЙ

Функция синус


— множество R всех действительных чисел.

Множество значений функции — отрезок [-1; 1], т.е. синус функция — ограниченная .

Функция нечетная: sin(−x)=−sin x для всех х ∈ R .

Функция периодическая

sin(x+2π· k) = sin x, где k ∈ Z для всех х ∈ R .

sin x = 0 при x = π·k , k ∈ Z .

sin x > 0 (положительная) для всех x ∈ (2π·k , π+2π·k ), k ∈ Z .

sin x < 0 (отрицательная) для всех x ∈ (π+2π·k , 2π+2π·k ), k ∈ Z .

Функция косинус


Область определения функции
— множество R всех действительных чисел.

Множество значений функции — отрезок [-1; 1], т.е. косинус функция — ограниченная .

Функция четная: cos(−x)=cos x для всех х ∈ R .

Функция периодическая с наименьшим положительным периодом 2π :

cos(x+2π· k ) = cos x, где k Z для всех х ∈ R .

cos x = 0 при
cos x > 0 для всех
cos x < 0 для всех
Функция возрастает от −1 до 1 на промежутках:
Функция убывает от −1 до 1 на промежутках:
Наибольшее значение функции sin x = 1 в точках:
Наименьшее значение функции sin x = −1 в точках:

Функция тангенс

Множество значений функции — вся числовая прямая, т.е. тангенс — функция неограниченная .

Функция нечетная: tg(−x)=−tg x
График функции симметричен относительно оси OY.

Функция периодическая с наименьшим положительным периодом π , т.е. tg(x+π· k ) = tg x, k Z для всех х из области определения.

Функция котангенс

Множество значений функции — вся числовая прямая, т.е. котангенс — функция неограниченная .

Функция нечетная: ctg(−x)=−ctg x для всех х из области определения.
График функции симметричен относительно оси OY.

Функция периодическая с наименьшим положительным периодом π , т.е. ctg(x+π· k )=ctg x, k Z для всех х из области определения.

Функция арксинус


Область определения функции
— отрезок [-1; 1]

Множество значений функции — отрезок -π /2 arcsin x π /2, т.е. арксинус — функция ограниченная .

Функция нечетная: arcsin(−x)=−arcsin x для всех х ∈ R .
График функции симметричен относительно начала координат.

На всей области определения.

Функция арккосинус


Область определения функции
— отрезок [-1; 1]

Множество значений функции — отрезок 0 arccos x π , т.е. арккосинус — функция ограниченная .


Функция является возрастающей на всей области определения.

Функция арктангенс


Область определения функции
— множество R всех действительных чисел.

Множество значений функции — отрезок 0 π, т.е. арктангенс — функция ограниченная .

Функция нечетная: arctg(−x)=−arctg x для всех х ∈ R .
График функции симметричен относительно начала координат.

Функция является возрастающей на всей области определения.

Функция арккотангенс


Область определения функции
— множество R всех действительных чисел.

Множество значений функции — отрезок 0 π, т.е. арккотангенс — функция ограниченная .

Функция не является ни четной, ни нечетной.
График функции несимметричен ни относительно начала координат, ни относительно оси Оy.

Функция является убывающей на всей области определения.

Мы выяснили, что поведение тригонометрических функций, и функции у = sin х в частности, на всей числовой прямой (или при всех значениях аргумента х ) полностью определяется ее поведением в интервале 0 < х < π / 2 .

Поэтому прежде всего мы построим график функции у = sin х именно в этом интервале.

Составим следующую таблицу значений нашей функции;

Отмечая соответствующие точки на плоскости координат и соединяя их плавной линией, мы получаем кривую, представленную на рисунке

Полученную кривую можно было бы построить и геометрически, не составляя таблицы значений функции у = sin х .

1.Первую четверть окружности радиуса 1 разделим на 8 равных частей.Ординаты точек деления окружности представляют собой синусы соответствующих углов.

2.Первая четверть окружности соответствует углам от 0 до π / 2 . Поэтому на оси х возьмем отрезок и разделим его на 8 равных частей.

3.Проведем прямые, параллельные оси х , а из точек деления восставим перпендикуляры до пересечения с горизонтальными прямыми.

4.Точки пересечения соединим плавной линией.

Теперь обратимся к интервалу π / 2 < х < π .
Каждое значение аргумента х из этого интервала можно представить в виде

x = π / 2 + φ

где 0 < φ < π / 2 . По формулам приведения

sin ( π / 2 + φ ) = соsφ = sin ( π / 2 - φ ).

Точки оси х с абциссами π / 2 + φ и π / 2 - φ симметричны друг другу относительно точки оси х с абсциссой π / 2 , и синусы в этих точках одинаковы. Это позволяет получить график функции у = sin х в интервале [ π / 2 , π ] путем простого симметричного отображения графика этой функции в интервале относительно прямой х = π / 2 .

Теперь, используя свойство нечетности функции у = sin х,

sin (- х ) = - sin х ,

легко построить график этой функции в интервале [- π , 0].

Функция у = sin х периодична с периодом 2π ;. Поэтому для построения всего графика этой функции достаточно кривую, изображенную на рисунке, продолжить влево и вправо периодически с периодом .

Полученная в результате этого кривая называется синусоидой . Она и представляет собой график функции у = sin х.

Рисунок хорошо иллюстрирует все те свойства функции у = sin х , которые раньше были доказаны нами. Напомним эти свойства.

1) Функция у = sin х определена для всех значений х , так что областью ее определения является совокупность всех действительных чисел.

2) Функция у = sin х ограничена. Все значения, которые она принимает, заключены в интервале от -1 до 1, включая эти два числа. Следовательно, область изменения этой функции определяется неравенством -1< у < 1. При х = π / 2 + 2kπ функция принимает наибольшие значения, равные 1, а при х = - π / 2 + 2kπ - наименьшие значения, равные - 1.

3) Функция у = sin х является нечетной (синусоида симметрична относительно начала координат).

4) Функция у = sin х периодична с периодом 2π .

5) В интервалах 2nπ < x < π + 2nπ (n - любое целое число) она положительна, а в интервалах π + 2kπ < х < 2π + 2kπ (k - любое целое число) она отрицательна. При х = kπ функция обращается в нуль. Поэтому эти значения аргумента х (0; ±π ; ±2π ; ...) называются нулями функции у = sin x

6) В интервалах - π / 2 + 2nπ < х < π / 2 + 2nπ функция у = sin x монотонно возрастает, а в интервалах π / 2 + 2kπ < х < 3π / 2 + 2kπ она монотонно убывает.

Cледует особо обратить внимание на поведение функции у = sin x вблизи точки х = 0 .

Например, sin 0,012 0,012; sin (-0,05) -0,05;

sin 2° = sin π 2 / 180 = sin π / 90 0,03 0,03.

Вместе с тем следует отметить, что при любых значениях х

| sin x | < | x | . (1)

Действительно, пусть радиус окружности, представленной на рисунке, равен 1,
a / AОВ = х .

Тогда sin x = АС. Но АС < АВ, а АВ, в свою очередь, меньше длины дуги АВ, на которую опирается угол х . Длина этой дуги равна, очевидно, х , так как радиус окружности равен 1. Итак, при 0 < х < π / 2

sin х < х.

Отсюда в силу нечетности функции у = sin x легко показать, что при - π / 2 < х < 0

| sin x | < | x | .

Наконец, при x = 0

| sin x | = | x |.

Таким образом, для | х | < π / 2 неравенство (1) доказано. На самом же деле это неравенство верно и при | x | > π / 2 в силу того, что | sin х | < 1, а π / 2 > 1

Упражнения

1.По графику функции у = sin x определить: a) sin 2; б) sin 4; в) sin (-3).

2.По графику функции у = sin x определить, какое число из интервала
[ - π / 2 , π / 2 ] имеет синус, равный: а) 0,6; б) -0,8.

3. По графику функции у = sin x определить, какие числа имеют синус,
равный 1 / 2 .

4. Найти приближенно (без использования таблиц): a) sin 1°; б) sin 0,03;
в) sin (-0,015); г) sin (-2°30").












Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Железо ржавеет, не находя себе применения,
стоячая вода гниет или на холоде замерзает,
а ум человека, не находя себе применения, чахнет.
Леонардо да Винчи

Используемые технологии: проблемного обучения, критического мышления, коммуникативного общения.

Цели:

  • Развитие познавательного интереса к обучению.
  • Изучение свойств функции у = sin x.
  • Формирование практических навыков построения графика функции у = sin x на основе изученного теоретического материала.

Задачи:

1. Использовать имеющийся потенциал знаний о свойствах функции у = sin x в конкретных ситуациях.

2. Применять осознанное установление связей между аналитической и геометрической моделями функции у = sin x.

Развивать инициативу, определенную готовность и интерес к поиску решения; умение принимать решения, не останавливаться на достигнутом, отстаивать свою точку зрения.

Воспитывать у учащихся познавательную активность, чувство ответственности, уважения друг к другу, взаимопонимания, взаимоподдержки, уверенности в себе; культуру общения.

Ход урока

1 этап. Актуализация опорных знаний, мотивация изучения нового материала

"Вход в урок".

На доске написаны 3 утверждения:

  1. Тригонометрическое уравнение sin t = a всегда имеет решения.
  2. График нечетной функции можно построить с помощью преобразования симметрии относительно оси Оу.
  3. График тригонометрической функции можно построить, используя одну главную полуволну.

Учащиеся обсуждают в парах: верны ли утверждения? (1 минута). Затем результаты первоначального обсуждения (да, нет) вносятся в таблицу в столбец "До".

Учитель ставит цели и задачи урока.

2. Актуализация знаний (фронтально на модели тригонометрического круга ).

Мы уже познакомились с функцией s = sin t.

1) Какие значения может принимать переменная t. Какова область определения этой функции?

2) В каком промежутке заключены значения выражения sin t. Найти наибольшее и наименьшее значения функции s = sin t.

3) Решите уравнение sin t = 0.

4) Что происходит с ординатой точки при ее движении по первой четверти? (ордината увеличивается). Что происходит с ординатой точки при ее движении по второй четверти? (ордината постепенно уменьшается). Как это связано с монотонностью функции? (функция s = sin t возрастает на отрезке и убывает на отрезке ).

5) Запишем функцию s = sin t в привычном для нас виде у = sin x (строить будем в привычной системе координат хОу) и составим таблицу значений этой функции.

х 0
у 0 1 0

2 этап. Восприятие, осмысление, первичное закрепление, непроизвольное запоминание

4 этап. Первичная систематизация знаний и способов деятельности, их перенос и применение в новых ситуациях

6. № 10.18 (б,в)

5 этап. Итоговый контроль, коррекция, оценка и самооценка

7. Возвращаемся к утверждениям (начало урока), обсуждаем, используя свойства тригонометрической функции у = sin x, и заполняем в таблице столбец "После".

8. Д/з: п.10, №№ 10.7(а), 10.8(б), 10.11(б), 10.16(а)

Геометрическое определение синуса и косинуса

\(\sin \alpha = \dfrac{|BC|}{|AB|} \) , \(\cos \alpha = \dfrac{|AC|}{|AB|} \)

α - угол, выраженный в радианах.

Синус (sin α) – это тригонометрическая функция от угла α между гипотенузой и катетом прямоугольного треугольника, равная отношению длины противолежащего катета |BC| к длине гипотенузы |AB|.

Косинус (cos α) – это тригонометрическая функция от угла α между гипотенузой и катетом прямоугольного треугольника, равная отношению длины прилежащего катета |AC| к длине гипотенузы |AB|.

Тригонометрическое определение

С помощью формул, указанных выше, можно найти синус и косинус острого угла. Но нужно научиться вычислять синус и косинус угла произвольной величины. Прямоугольный треугольник не даёт такой возможности (тупого угла, например, в нём быть не может); следовательно, нужно более общее определение синуса и косинуса, содержащее указанные формулы как частный случай.

На помощь приходит тригонометрическая окружность. Пусть дан некоторый угол; ему отвечает одноимённая точка на тригонометрической окружности.

Рис. 2. Тригонометрическое определение синуса и косинуса

Косинус угла - это абсцисса точки. Синус угла - это ордината точки.

На рис. 2 угол взят острым, и легко понять, что данное определение совпадает с общим геометрическим определением. В самом деле, мы видим прямоугольный треугольник с единичной гипотенузой O и острым углом. Прилежащий катет этого треугольника есть cos (сравните с рис. 1) и одновременно абсцисса точки; противолежащий катет есть sin (как на рис. 1) и одновременно ордината точки.

Но теперь мы уже не стеснены первой четвертью и получаем возможность распространить данное определение на любой угол. На рис. 3 показано, что такое синус и косинус угла во второй, третьей и четвёртой четвертях.

Рис. 3. Синус и косинус во II, III и IV четвертях

Табличные значения синуса и косинуса

Нулевой угол \(\LARGE 0^{\circ } \)

Абсцисса точки 0 равна 1 , ордината точки 0 равна 0 . Следовательно,

cos 0 = 1 sin 0 = 0

Рис 4. Нулевой угол

Угол \(\LARGE \frac{\pi}{6} = 30^{\circ } \)

Мы видим прямоугольный треугольник с единичной гипотенузой и острым углом 30° . Как известно, катет, лежащий напротив угла 30° , равен половине гипотенузы 1 ; иными словами, вертикальный катет равен 1/2 и, стало быть,

\[ \sin \frac{\pi}{6} =\frac{1}{2} \]

Горизонтальный катет находим по теореме Пифагора (или, что то же самое, находим косинус по основному тригонометрическому тождеству):

\[ \cos \frac{\pi}{6} = \sqrt{1 - \left(\frac{1}{2} \right)^{2} } =\frac{\sqrt{3} }{2} \]

1 Почему так получается? Разрежьте равносторонний треугольник со стороной 2 вдоль его высоты! Он распадётся на два прямоугольных треугольника с гипотенузой 2, острым углом 30° и меньшим катетом 1.

Рис 5. Угол π / 6

Угол \(\LARGE \frac{\pi}{4} = 45^{\circ } \)

В данном случае прямоугольный треугольник является равнобедренным; синус и косинус угла 45° равны друг другу. Обозначим их пока через x . Имеем:

\[ x^{2} + x^{2} = 1 \]

откуда \(x=\frac{\sqrt{2} }{2} \). Следовательно,

\[ \cos \frac{\pi}{4} = \sin \frac{\pi}{4} =\frac{\sqrt{2} }{2} \]

Рис 5. Угол π / 4

Свойства синуса и косинуса

Принятые обозначения

\(\sin^2 x \equiv (\sin x)^2; \) \(\quad \sin^3 x \equiv (\sin x)^3; \) \(\quad \sin^n x \equiv (\sin x)^n \) \(\sin^{-1} x \equiv \arcsin x \) \((\sin x)^{-1} \equiv \dfrac1{\sin x} \equiv \cosec x \) .

\(\cos^2 x \equiv (\cos x)^2; \) \(\quad \cos^3 x \equiv (\cos x)^3; \) \(\quad \cos^n x \equiv (\cos x)^n \) \(\cos^{-1} x \equiv \arccos x \) \((\cos x)^{-1} \equiv \dfrac1{\cos x} \equiv \sec x \) .

Периодичность

Функции y = sin x и y = cos x периодичны с периодом 2π.

\(\sin(x + 2\pi) = \sin x; \quad \) \(\cos(x + 2\pi) = \cos x \)

Четность

Функция синус – нечетная. Функция косинус – четная.

\(\sin(-x) = - \sin x; \quad \) \(\cos(-x) = \cos x \)

Области определения и значений, экстремумы, возрастание, убывание

Основные свойства синуса и косинуса представлены в таблице (n - целое).

\(\small < x < \) \(\small -\pi + 2\pi n \) \(\small < x < \) \(\small 2\pi n \)
Убывание \(\small \dfrac{\pi}2 + 2\pi n \) \(\small < x < \) \(\small \dfrac{3\pi}2 + 2\pi n \) \(\small 2\pi n \) \(\small < x < \) \(\pi + \small 2\pi n \)
Максимумы, \(\small x = \) \(\small \dfrac{\pi}2 + 2\pi n \) \(\small x = 2\pi n \)
Минимумы, \(\small x = \) \(\small -\dfrac{\pi}2 + 2\pi n \) \(\small x = \) \(\small \pi + 2\pi n \)
Нули, \(\small x = \pi n \) \(\small x = \dfrac{\pi}2 + \pi n \)
Точки пересечения с осью ординат, x = 0 y = 0 y = 1

Основные формулы, содержащие синус и косинус

Сумма квадратов

\(\sin^2 x + \cos^2 x = 1 \)

Формулы синуса и косинуса суммы и разности

\(\sin(x + y) = \sin x \cos y + \cos x \sin y \)
\(\sin(x - y) = \sin x \cos y - \cos x \sin y \)
\(\cos(x + y) = \cos x \cos y - \sin x \sin y \)
\(\cos(x - y) = \cos x \cos y + \sin x \sin y \)

\(\sin(2x) = 2 \sin x \cos x \)
\(\cos(2x) = \cos^2 x - \sin^2 x = \) \(2 \cos^2 x - 1 = 1 - 2 \sin^2 x \)
\(\cos\left(\dfrac{\pi}2 - x \right) = \sin x \) ; \(\sin\left(\dfrac{\pi}2 - x \right) = \cos x \)
\(\cos(x + \pi) = - \cos x \) ; \(\sin(x + \pi) = - \sin x \)

Формулы произведения синусов и косинусов

\(\sin x \cos y = \) \(\dfrac12 {\Large [} \sin(x - y) + \sin(x + y) {\Large ]} \)
\(\sin x \sin y = \) \(\dfrac12 {\Large [} \cos(x - y) - \cos(x + y) {\Large ]} \)
\(\cos x \cos y = \) \(\dfrac12 {\Large [} \cos(x - y) + \cos(x + y) {\Large ]} \)

\(\sin x \cos y = \dfrac12 \sin 2x \)
\(\sin^2 x = \dfrac12 {\Large [} 1 - \cos 2x {\Large ]} \)
\(\cos^2 x = \dfrac12 {\Large [} 1 + \cos 2x {\Large ]} \)

Формулы суммы и разности

\(\sin x + \sin y = 2 \, \sin \dfrac{x+y}2 \, \cos \dfrac{x-y}2 \)
\(\sin x - \sin y = 2 \, \sin \dfrac{x-y}2 \, \cos \dfrac{x+y}2 \)
\(\cos x + \cos y = 2 \, \cos \dfrac{x+y}2 \, \cos \dfrac{x-y}2 \)
\(\cos x - \cos y = 2 \, \sin \dfrac{x+y}2 \, \sin \dfrac{y-x}2 \)

Выражение синуса через косинус

\(\sin x = \cos\left(\dfrac{\pi}2 - x \right) = \) \(\cos\left(x - \dfrac{\pi}2 \right) = - \cos\left(x + \dfrac{\pi}2 \right) \) \(\sin^2 x = 1 - \cos^2 x \) \(\sin x = \sqrt{1 - \cos^2 x} \) \(\{ 2 \pi n \leqslant x \leqslant \pi + 2 \pi n \} \) \(\sin x = - \sqrt{1 - \cos^2 x} \) \(\{ -\pi + 2 \pi n \leqslant x \leqslant 2 \pi n \} \) .

Выражение косинуса через синус

\(\cos x = \sin\left(\dfrac{\pi}2 - x \right) = \) \(- \sin\left(x - \dfrac{\pi}2 \right) = \sin\left(x + \dfrac{\pi}2 \right) \) \(\cos^2 x = 1 - \sin^2 x \) \(\cos x = \sqrt{1 - \sin^2 x} \) \(\{ -\pi/2 + 2 \pi n \leqslant x \leqslant \pi/2 + 2 \pi n \} \) \(\cos x = - \sqrt{1 - \sin^2 x} \) \(\{ \pi/2 + 2 \pi n \leqslant x \leqslant 3\pi/2 + 2 \pi n \} \) .

Выражение через тангенс

\(\sin^2 x = \dfrac{\tg^2 x}{1+\tg^2 x} \) \(\cos^2 x = \dfrac1{1+\tg^2 x} \) .

При \(- \dfrac{\pi}2 + 2 \pi n < x < \dfrac{\pi}2 + 2 \pi n \) \(\sin x = \dfrac{\tg x}{ \sqrt{1+\tg^2 x} } \) \(\cos x = \dfrac1{ \sqrt{1+\tg^2 x} } \) .

При \(\dfrac{\pi}2 + 2 \pi n < x < \dfrac{3\pi}2 + 2 \pi n \) :
\(\sin x = - \dfrac{\tg x}{ \sqrt{1+\tg^2 x} } \) \(\cos x = - \dfrac1{ \sqrt{1+\tg^2 x} } \) .

Таблица синусов и косинусов, тангенсов и котангенсов

В данной таблице представлены значения синусов и косинусов при некоторых значениях аргумента.
[ img style="max-width:500px;max-height:1080px;" src="tablitsa.png" alt="Таблица синусов и косинусов" title="Таблица синусов и косинусов" ]

Выражения через комплексные переменные

\(i^2 = -1 \)
\(\sin z = \dfrac{e^{iz} - e^{-iz}}{2i} \) \(\cos z = \dfrac{e^{iz} + e^{-iz}}{2} \)

Формула Эйлера

\(e^{iz} = \cos z + i \sin z \)

Выражения через гиперболические функции

\(\sin iz = i \sh z \) \(\cos iz = \ch z \)
\(\sh iz = i \sin z \) \(\ch iz = \cos z \)

Производные

\((\sin x)" = \cos x \) \((\cos x)" = - \sin x \) . Вывод формул > > >

Производные n-го порядка:
\(\left(\sin x \right)^{(n)} = \sin\left(x + n\dfrac{\pi}2 \right) \) \(\left(\cos x \right)^{(n)} = \cos\left(x + n\dfrac{\pi}2 \right) \) .

Интегралы

\(\int \sin x \, dx = - \cos x + C \) \(\int \cos x \, dx = \sin x + C \)
См. также раздел Таблица неопределенных интегралов >>>

Разложения в ряды

\(\sin x = \sum_{n=0}^{\infty} \dfrac{ (-1)^n x^{2n+1} }{ (2n+1)! } = \) \(x - \dfrac{x^3}{3!} + \dfrac{x^5}{5!} - \dfrac{x^7}{7!} + ... \) \(\{- \infty < x < \infty \} \)
\(\cos x = \sum_{n=0}^{\infty} \dfrac{ (-1)^n x^{2n} }{ (2n)! } = \) \(1 - \dfrac{x^2}{2!} + \dfrac{x^4}{4!} - \dfrac{x^6}{6!} + ... \) \(\{ - \infty < x < \infty \} \)

Секанс, косеканс

\(\sec x = \dfrac1{ \cos x } ; \) \(\cosec x = \dfrac1{ \sin x } \)

Обратные функции

Обратными функциями к синусу и косинусу являются арксинус и арккосинус, соответственно.

Арксинус, arcsin

\(y = \arcsin x \) \(\left\{ -1 \leqslant x \leqslant 1; \; - \dfrac{\pi}2 \leqslant y \leqslant \dfrac{\pi}2 \right\} \)
\(\sin(\arcsin x) = x \)
\(\arcsin(\sin x) = x \) \(\left\{ - \dfrac{\pi}2 \leqslant x \leqslant \dfrac{\pi}2 \right\} \)

Арккосинус, arccos

\(y = \arccos x \) \(\left\{ -1 \leqslant x \leqslant 1; \; 0 \leqslant y \leqslant \pi \right\} \)
\(\cos(\arccos x) = x \) \(\{ -1 \leqslant x \leqslant 1 \} \)
\(\arccos(\cos x) = x \) \(\{ 0 \leqslant x \leqslant \pi \} \)

Использованная литература:
И.Н. Бронштейн, К.А. Семендяев, Справочник по математике для инженеров и учащихся втузов, «Лань», 2009.

В вашем браузере отключен Javascript.
Чтобы произвести расчеты, необходимо разрешить элементы ActiveX!

Функция y = sin x

Графиком функции является синусоида.

Полную неповторяющуюся часть синусоиды называют волной синусоиды.

Половину волны синусоиды называют полуволной синусоиды (или аркой).


Свойства функции
y = sin x :

3) Это нечетная функция.

4) Это непрерывная функция.


- с осью абсцисс: (πn; 0),
- с осью ординат: (0; 0).

6) На отрезке [-π/2; π/2] функция возрастает, на отрезке [π/2; 3π/2] – убывает.

7) На промежутках функция принимает положительные значения.
На промежутках [-π + 2πn; 2πn] функция принимает отрицательные значения.

8) Промежутки возрастания функции: [-π/2 + 2πn; π/2 + 2πn].
Промежутки убывания функции: [π/2 + 2πn; 3π/2 + 2πn].

9) Точки минимума функции: -π/2 + 2πn.
Точки максимума функции: π/2 + 2πn


наибольшее значение 1.

Для построения графика функции y = sin x удобно применять следующие масштабы:

На листе в клетку за единицу отрезка примем длину в две клетки.

На оси x отмерим длину π. При этом для удобства 3,14 представим в виде 3 – то есть без дроби. Тогда на листе в клетку π составит 6 клеток (трижды по 2 клетки). А каждая клетка получит свое закономерное имя (от первой до шестой): π/6, π/3, π/2, 2π/3, 5π/6, π. Это значения x .

На оси y отметим 1, включающий две клетки.

Составим таблицу значений функции, применяя наши значения x :

√3
-
2

√3
-
2

Далее составим график. Получится полуволна, наивысшая точка которой (π/2; 1). Это график функции y = sin x на отрезке . Добавим к построенному графику симметричную полуволну (симметричную относительно начала координат, то есть на отрезке -π). Гребень этой полуволны – под осью x с координатами (-1; -1). В результате получится волна. Это график функции y = sin x на отрезке [-π; π].

Можно продолжить волну, построив ее и на отрезке [π; 3π], [π; 5π], [π; 7π] и т.д. На всех этих отрезках график функции будет выглядеть так же, как на отрезке [-π; π]. Получится непрерывная волнистая линия с одинаковыми волнами.

Функция y = cos x .

Графиком функции является синусоида (ее иногда называют косинусоидой).



Свойства функции y = cos x :

1) Область определения функции – множество действительных чисел.

2) Область значений функции – отрезок [–1; 1]

3) Это четная функция.

4) Это непрерывная функция.

5) Координаты точек пересечения графика:
- с осью абсцисс: (π/2 + πn; 0),
- с осью ординат: (0;1).

6) На отрезке функция убывает, на отрезке [π; 2π] – возрастает.

7) На промежутках [-π/2 + 2πn; π/2 + 2πn] функция принимает положительные значения.
На промежутках [π/2 + 2πn; 3π/2 + 2πn] функция принимает отрицательные значения.

8) Промежутки возрастания: [-π + 2πn; 2πn].
Промежутки убывания: ;

9) Точки минимума функции: π + 2πn.
Точки максимума функции: 2πn.

10) Функция ограничена сверху и снизу. Наименьшее значение функции –1,
наибольшее значение 1.

11) Это периодическая функция с периодом 2π (Т = 2π)

Функция y = mf (x ).

Возьмем предыдущую функцию y = cos x . Как вы уже знаете, ее графиком является синусоида. Если мы умножим косинус этой функции на определенное число m, то волна растянется от оси x (либо сожмется, в зависимости от величины m).
Эта новая волна и будет графиком функции y = mf(x), где m – любое действительное число.

Таким образом, функция y = mf(x) – это привычная нам функция y = f(x), умноженная на m.

Если m < 1, то синусоида сжимается к оси x на коэффициент m. Если m > 1, то синусоида растягивается от оси x на коэффициент m.

Выполняя растяжение или сжатие, можно сначала построить лишь одну полуволну синусоиды, а затем уже достроить весь график.

Функция y = f (kx ).

Если функция y = mf (x ) приводит к растяжению синусоиды от оси x либо сжатию к оси x , то функция y = f(kx) приводит к растяжению от оси y либо сжатию к оси y .

Причем k – любое действительное число.

При 0 < k < 1 синусоида растягивается от оси y на коэффициент k. Если k > 1, то синусоида сжимается к оси y на коэффициент k.

Составляя график этой функции, можно сначала построить одну полуволну синусоиды, а по ней достроить затем весь график.

Функция y = tg x .

Графиком функции y = tg x является тангенсоида.

Достаточно построить часть графика на промежутке от 0 до π/2, а затем можно симметрично продолжить ее на промежутке от 0 до 3π/2.


Свойства функции y = tg x :

Функция y = ctg x

Графиком функции y = ctg x также является тангенсоида (ее иногда называют котангенсоидой).



Свойства функции y = ctg x :