Реферат: Модели стационарных временных рядов и их индефикация. Шпаргалка: Модели стационарных временных рядов и их индефикация Системы эконометрических уравнений

Стохастический временной ряд называется стационарным, если его математическое ожидание, дисперсия, автоковариация и автокорреляция будут неизменными во времени.

К основным линейным моделям стационарных временных рядов ᴏᴛʜᴏϲᴙтся:

  1. модели авторегрессии;
  2. модели скользящего среднего;
  3. модели авторегрессии скользящего среднего.

Уровень временного ряда, представленного моделью авторегрессии порядка р , можно представить следующим образом:

y t =δ 1 y t-1 +δ 2 y t-2 +…+δ p y t–p +ν t ,

ν t – белый шум (случайная величина с нулевым математическим ожиданием)

На практике чаще всего могут быть использованы модели авторегрессии первого, второго, максимум третьего порядков.

Модель авторегрессии первого порядка АР(1) называется “Марковским процессом”, потому что значения переменной y в текущий момент времени t зависят только от значений переменной y в предыдущий момент времени (t–1) Данная модель имеет вид:

y t =δy t–1 +ν t .

Для модели АР(1) действует ограничение |δ|<1 .

y t =δ 1 y t-1 +δ 2 y t-2 +ν t .

  1. (δ 1 +δ 2)<1;
  2. (δ 1 –δ 2)<1;
  3. |δ 2 |<1 .

Модели скользящего среднего ᴏᴛʜᴏϲᴙтся к простому классу моделей временных рядов с конечным числом параметров, кᴏᴛᴏᴩые можно получить, представив уровень временного ряда как алгебраическую сумму членов ряда белого шума с числом слагаемых q .

Общая модель скользящего среднего порядка q имеет вид:

y t =ν t –φ 1 ν t–1 –φ2ν t–2 –…–φqν t –q,

где q – порядок модели скользящего среднего;

φ t – неизвестные коэффициенты модели, подлежащие оцениванию;

ν t – белый шум.

Модель скользящего среднего порядка q обозначается как CC(q) или MA(q)

На практике чаще всего могут быть использованы модели скользящего среднего первого CC(1) и второго порядков CC(2)

Коэффициенты модели скользящего среднего порядка q не обязательно должны в сумме давать единицу и не обязательно должны быть положительными.

Для достижения большей гибкости модели временных рядов при эконометрическом моделировании в неё включают как члены авторегрессии, так и члены скользящего среднего. Подобные модели получили название смешанных моделей авторегрессии скользящего среднего и также ᴏᴛʜᴏϲᴙтся к линейным моделям стационарных временных рядов.

Чаще всего на практике используется смешанная модель АРСС(1) с одним параметром авторегрессии p=1 и одним параметром скользящего среднего q=1 . Данная модель имеет вид:

y t =δy t–1 +ν t –φν t–1 ,

φ – параметр процесса скользящего среднего;

ν t – белый шум.

На коэффициенты данной модели накладываются следующие ограничения:

  1. |δ|<1 – условие, обеспечивающее стационарность смешанной модели;
  2. | φ|‹1 – условие, обеспечивающее обратимость смешанной модели.

Свойство обратимости смешанной модели АРСС(p,q) означает, что модель скользящего среднего можно обратить или переписать в виде модели авторегрессии неограниченного порядка, и наоборот.

Важное значение в анализе временных рядов имеют стационарные временные ряды, вероятностные свойства которых не изменяются во времени. Стационарные временные ряды применяются, в частности, при описании случайных составляющих анализируемых рядов.

Временной ряд y t (t= 1,2,…,n) называется строго стационарным (или стационарным в узком смысле), если совместное распределение вероятностей n наблюдений y 1 ,y­ 2 ,…..,y n такое же, как и n наблюдений y 1+ t ,y 2+ t ,....y n + t при любых n, t и t. Другими словами, свойства строго стационарных рядов y t не зависит от момента t, т.е. закон распределения и его числовые характеристики не зависят от t. Следовательно, математическое ожидание a y (t) = a, среднее квадратическое отклонение s у (t) = s могут быть оценены по наблюдениям y t (t= 1,2,…,n) по формулам:

(6.3)

Простейшим примером стационарного временного ряда , у которого математическое ожидание равно нулю, а ошибок e t некоррелированы , является «белый шум» . Следовательно, можно сказать, что возмущения (ошибки) e t в классической линейной регрессионной модели образуют белый шум , а в случае их нормального распределения – нормальный (гауссовский ) белый шум.

Степень тесноты связи между последовательностями наблюдений временного ряда y 1 ,y­ 2 ,…..,y n и y 1+ t ,y 2+ t ,....y n + t (сдвинутых относительно друг от друга на e единиц, или, как говорят, с лагом t) может быть определена с помощью коэффициента корреляции

(6.4)

ибо

Так как коэффициент r(t) измеряет корреляцию между членами одного и того же ряда, его называют коэффициентом автокорреляции , а зависимость r(t) – автокорреляционной функцией . В силу стационарности временного ряда y t (t= 1,2,…,n) автокорреляционная функция r(t) зависит только от лага t, причем корреляционная функция r(- t) = r(t) , т.е. при изучение r(t) можно ограничиться рассмотрением только положительных значений t.

Статистической оценкой r(t) является выборочный коэффициент автокорреляции r(t), определяемый по формуле коэффициента корреляции (3.20), в которой x i = y t , y i = y t + t , a n заменяется на n - t:

Функцию r(t) называют выборочной автокорреляционной функцией , а ее график - коррелограммой .

При расчете r(t) следует помнить, что с увеличением t число n - t пар наблюдений y t ,y t + t уменьшается, поэтому лаг t должен быть таким, чтобы число n - t было достаточным для определения r(t). Обычно ориентируются на соотношение t £ n/4.

Для стационарного временного ряда с увеличением лага t взаимосвязь членов временного ряда y t и y t + t ослабевает и автокорреляционная функция r(t) должна убывать (по абсолютной величине). В тоже время для ее выборочного (эмпирического) аналога r(t), особенно при небольшом числе пар наблюдений n - t , свойство монотонного убывания, (по абсолютной величине) при возрастании t может нарушаться.

Наряду с автокорреляционной функцией при исследовании стационарных временных рядов рассматривается частная автокорреляционная функция r част (t), где r част (t) есть частный коэффициент корреляции между членами временного ряда y t и y t + t при устранении (элиминировании) влияния промежуточных (между y t и y t + t) членов.

Статистической оценкой r част (t) является выборочная частная автокорреляционная r част (t) где r част (t) – выборочный частный коэффициент корреляции, определяемый по формуле (5.21) или (5.22).Например, выборочный частный коэффициент автокорреляции 1-го порядка между членами временного ряда y t и y t + t при устранении влияния y t +1 может быть вычислен по формулу (5.22):

Где r(1) , r (1,2) ,r(2) – выборочные коэффициенты автокорреляции между y t и y t +1 , y t +1 и y t +2 , y t и y t +2 , t = 1,….,n.

Пример 6.1. По данным табл. 6.1 для временного ряда y t найти среднее значение, среднее квадратическое отклонение, коэффициенты автокорреляции 1-го порядка.

Решение. Среднее значение временного ряда находим по формуле (6.2):

Дисперсию и среднее квадратическое отклонение можно вычислить по формуле (6.3), но в данном случае проще использовать соотношение

где

Найдем коэффициент автокорреляции r(t) временного ряда (для лага t = 1), т.е. коэффициент корреляции между последовательностями семи пар наблюдений y t и y t + t (t = 1,2….,7).

ВВЕДЕНИЕ

Существующие модели временных рядов широко используются в процессе изучения динамики реальных явлений различной природы. Они зачастую применяются в исследованиях динамики грузо - и пассажиропотоков, товарных и складских запасов, миграционных процессов, анализе химических процессов, моделировании разнообразных природных событий. Наиболее активно модели временных рядов применяются в анализе финансовых рынков, при оценке изменений финансовых показателей, прогнозировании цен на различные товары, курсов акций, соотношений курсов валют и т. п.

Широкий круг реальных общественных и естественных процессов обычно может быть представлен набором последовательных значений оцениваемого показателя у 1 , у 2 ,..., у t ,..., у Т, которые фиксируются в определенные моменты времени t=1,2,... Т, так что интервал (t, t+1) является постоянным. Указанный набор значений у t , t=1,2,... обычно называется временным рядом (временной серией). Такой ряд представляет собой дискретный временной процесс.

Изменения значений у t во времени в реальной жизни обычно происходят под воздействием каких-либо причин, факторов. Однако их многообразие, сложность измерения, неопределенность в предположениях о существовании взаимосвязей с переменной у значительно затрудняет обоснование и построение «подходящей» для описания процесса у t , t=1,2,... многофакторной эконометрической модели классического типа. Поэтому часто выдвигается предположение о том, что совокупное влияние этих факторов формирует внутренние закономерности в отношении процесса у t .

Такое предположение направлено на применение для описания реальных временных процессов эконометрических моделей из специфического класса моделей временных рядов.

МОДЕЛИ СТАЦИОНАРНЫХ ВРЕМЕННЫХ РЯДОВ

Особенности стационарных временных рядов и тесты на стационарность

Все модели временных рядов имеют общее свойство, которое основано на предположении значительной зависимости текущего значения уровня показателя y t от его предыстории. Иными словами уровень показателя y t генерируется значениями y t-1 , y t-2 ,... на базе характерных для данного временного ряда закономерностях.

Указанное допущение выражается общим уравнением:

y t = f(y t-1 , y t-2 , …) + t (1.1)

где t - ошибка модели в момент t.

Здесь функция f отражает характер взаимосвязей, существующих в рассматриваемом временном ряду у t , t=1,2,... Удачный подбор функции f обусловливает высокую степень приближения правой «детерминированной» части выражения (1.1) к реальным значениям ряда. Степень этого приближения обычно характеризуется оценками и свойствами ошибки ряда t , t=1,2,... в данном случае имеется в виду, прежде всего минимальная дисперсия, соответствие белому шуму и т. п.

Для широкого круга процессов функция f имеет линейный вид. Например,

y t = а 1 y t-1 + а n y t-n + t .

Линейные модели временных рядов применяются, как правило, для описания стационарных процессов, при этом имеются в виду стационарные процессы второго порядка. У стационарного процесса n-го порядка значения всех своих моментов порядка n и ниже на всех временных отрезках, входящих в интервал t=1,2,..., Т отличаются постоянством. Строго стационарные процессы отличаются тем, что у них моменты всех порядков постоянны. Из сказанного следует, что для любых двух интервалов времени (Т 1 , Т 2) и (Т 3 , Т 4) для стационарного процесса второго порядка у t должны выполняться условия:

равенство математических ожиданий;

Равенство дисперсий;

Равенство однопорядковых коэффициентов автокорреляций.

Математически данные условия выражаются соотношениями:


где - оценки математических ожиданий;

D 1 (y), D 2 (y) - оценки дисперсий;

Оценки коэффициентов автокорреляции i-го порядка процесса у t на 1-ом и на 2-ом интервалах соответственно;

Среднее значение процесса (оценка математического ожидания) на интервале (1,Т);

D(y) - оценка дисперсии процесса на интервале (1,Т).

При реальном изучении стационарных временных рядов равенства (1.2)-(1.4) рассматриваются в статистическом смысле. Это дает основания утверждать, что даже при неполном соответствии равенство гипотеза о постоянстве математического ожидания процесса у t может быть принята в случае удовлетворения значений и определенному статистическому критерию.

С целью проверки соответствия временного ряда у t , t=1,2,... стационарному процессу и выполнимости условий (1.2)-(1.4) применяются различные тесты. Если результаты одного из них не дают возможности утверждать об истинности или ложности выдвинутой гипотезы, то может возникнуть необходимость использовать несколько тестов для проверки одного и того же условия.

Всю совокупность тестов на стационарность временных рядов можно разделить на три основные группы: непараметрические, полупараметрические и параметрические тесты.

Непараметрические тесты не выдвигают заранее каких-либо сведений о законе распределения тестируемого временного ряда, его параметрах. Они основаны на изучении взаимосвязей между порядками следования образующих его значений, позволяют выявить наличие или отсутствие закономерностей в продолжительности и (или) чередовании их серий, образованных, например, последовательностями единиц совокупности с одинаковыми знаками, сменой знаков у этих единиц и т.п.

В полупараметрических тестах используются относительно слабые предположения о характере распределения значений временного ряда. Они отражают общие свойства функции распределения приростов значений ряда - симметричности, расположения квантилей.

При использовании методов этой группы оценки параметров распределения оцениваются по порядковым статистикам: среднее по медиане, среднеквадратическое отклонение - по размаху уровней ряда и т. п.

Параметрические тесты используют при относительно строгих предположениях о законе распределения временного ряда и его параметров. Данные тесты позволяют оценить степень приближенности эмпирических (наблюдаемых) характеристик распределения временного ряда к рассчитанным теоретическим уровням.

Именно эта степень приближенности позволяет принять или отвергнуть гипотезу о соответствии свойств рассматриваемого ряда стационарному процессу.

Аннотация: Под временными рядами понимают экономические величины, зависящие от времени. При этом время предполагается дискретным, в противном случае говорят о случайных процессах, а не о временных рядах.

Модели стационарных и нестационарных временных рядов, их идентификация

Пусть Рассмотрим временной ряд . Пусть сначала временной ряд принимает числовые значения. Это могут быть, например, цены на батон хлеба в соседнем магазине или курс обмена доллара на рубли в ближайшем обменном пункте. Обычно в поведении временного ряда выявляют две основные тенденции - тренд и периодические колебания.

При этом под трендом понимают зависимость от времени линейного, квадратичного или иного типа, которую выявляют тем или иным способом сглаживания (например, экспоненциального сглаживания) либо расчетным путем, в частности, с помощью метода наименьших квадратов . Другими словами, тренд - это очищенная от случайностей основная тенденция временного ряда.

Временной ряд обычно колеблется вокруг тренда , причем отклонения от тренда часто обнаруживают правильность. Часто это связано с естественной или назначенной периодичностью, например, сезонной или недельной, месячной или квартальной (например, в соответствии с графиками выплаты заплаты и уплаты налогов). Иногда наличие периодичности и тем более ее причины неясны, и задача эконометрика - выяснить, действительно ли имеется периодичность .

Элементарные методы оценки характеристик временных рядов обычно достаточно подробно рассматриваются в курсах "Общей теории статистики" (см., например, учебники ), поэтому нет необходимости подробно разбирать их здесь. (Впрочем, о некоторых современных методах оценивания длины периода и самой периодической составляющей речь пойдет ниже.)

Характеристики временных рядов . Для более подробного изучения временных рядов используются вероятностно-статистические модели. При этом временной ряд рассматривается как случайный процесс (с дискретным временем) основными характеристиками являются математическое ожидание , т.е.

Дисперсия , т.е.

и автокорреляционная функция временного ряда

т.е. функция двух переменных, равная коэффициенту корреляции между двумя значениями временного ряда и .

В теоретических и прикладных исследованиях рассматривают широкий спектр моделей временных рядов. Выделим сначала стационарные модели. В них совместные функции распределения для любого числа моментов времени , а потому и все перечисленные выше характеристики временного ряда не меняются со временем . В частности, математическое ожидание и дисперсия являются постоянными величинами, автокорреляционная функция зависит только от разности . Временные ряды, не являющиеся стационарными, называются нестационарными .

Линейные регрессионные модели с гомоскедастичными и гетероскедастичными, независимыми и автокоррелированными остатками . Как видно из сказанного выше, основное - это "очистка" временного ряда от случайных отклонений, т.е. оценивание математического ожидания. В отличие от простейших моделей регрессионного анализа , рассмотренных в , здесь естественным образом появляются более сложные модели. Например, дисперсия может зависеть от времени. Такие модели называют гетероскедастичными , а те, в которых нет зависимости от времени - гомоскедастичными. (Точнее говоря, эти термины могут относиться не только к переменной "время", но и к другим переменным.)

Замечание . Как уже отмечалось в "Многомерный статистический анализ" , простейшая модель метода наименьших квадратов допускает весьма далекие обобщения, особенно в области системам одновременных эконометрических уравнений для временных рядов. Для понимания соответствующей теории и алгоритмов необходимо профессиональное владение матричной алгеброй. Поэтому мы отсылаем тех, кому это интересно, к литературе по системам эконометрических уравнений и непосредственно по временным рядам , в которой особенно много интересуются спектральной теорией, т.е. выделением сигнала из шума и разложением его на гармоники. Подчеркнем в очередной раз, что за каждой главой настоящей книги стоит большая область научных и прикладных исследований, вполне достойная того, чтобы посвятить ей много усилий. Однако из-за ограниченности объема книги мы вынуждены изложение сделать конспективным.

Системы эконометрических уравнений

Пример модели авторегрессии . В качестве первоначального примера рассмотрим эконометрическую модель временного ряда, описывающего рост индекса потребительских цен (индекса инфляции). Пусть - рост цен в месяц (подробнее об этой проблематике см. "Эконометрический анализ инфляции"). Тогда по мнению некоторых экономистов естественно предположить, что

(6.1)

где - рост цен в предыдущий месяц (а - некоторый коэффициент затухания, предполагающий, что при отсутствии внешний воздействий рост цен прекратится), - константа (она соответствует линейному изменению величины со временем), - слагаемое, соответствующее влиянию эмиссии денег (т.е. увеличения объема денег в экономике страны, осуществленному Центральным Банком) в размере и пропорциональное эмиссии с коэффициентом , причем это влияние проявляется не сразу, а через 4 месяца; наконец, - это неизбежная погрешность .

Модель (1), несмотря на свою простоту, демонстрирует многие характерные черты гораздо более сложных эконометрических моделей. Во-первых, обратим внимание на то, что некоторые переменные определяются (рассчитываются) внутри модели, как . Их называют эндогенными (внутренними) . Другие задаются извне (это экзогенные переменные). Иногда, как в теории управления, среди экзогенных переменных , выделяют управляемые переменные - те, с помощью которых менеджер может привести систему в нужное ему состояние.

Во-вторых, в соотношении (1) появляются переменные новых типов - с лагами, т.е. аргументы в переменных относятся не к текущему моменту времени, а к некоторым прошлым моментам.

В-третьих, составление эконометрической модели типа (1) - это отнюдь не рутинная операция. Например, запаздывание именно на 4 месяца в связанном с эмиссией денег слагаемом - это результат достаточно изощренной предварительной статистической обработки. Далее, требует изучения вопрос зависимости или независимости величин и . От решения этого вопроса зависит, как выше уже отмечалось, конкретная реализация процедуры метода наименьших квадратов .

С другой стороны, в модели (1) всего 3 неизвестных параметра, и постановку метода наименьших квадратов выписать нетрудно:

Проблема идентифицируемости . Представим теперь модель тапа (6.1) с большим числом эндогенных и экзогенных переменных , с лагами и сложной внутренней структурой. Вообще говоря, ниоткуда не следует, что существует хотя бы одно решение у такой системы. Поэтому возникает не одна, а две проблемы. Есть ли хоть одно решение (проблема идентифицируемости)? Если да, то как найти наилучшее решение из возможных? (Это - проблема статистической оценки параметров.)

И первая, и вторая задача достаточно сложны. Для решения обоих задач разработано множество методов, обычно достаточно сложных, лишь часть из которых имеет научное обоснование. В частности, достаточно часто пользуются статистическими оценками, не являющимися состоятельными (строго говоря, их даже нельзя назвать оценками).

Коротко опишем некоторые распространенные приемы при работе с системами линейных эконометрических уравнений.

Система линейных одновременных эконометрических уравнений . Чисто формально можно все переменные выразить через переменные, зависящие только от текущего момента времени. Например, в случае уравнения (6.1) достаточно положить

Тогда уравнение пример вид

(6.2)

Отметим здесь же возможность использования регрессионных моделей с переменной структурой путем введения фиктивных переменных. Эти переменные при одних значениях времени (скажем, начальных) принимают заметные значения, а при других - сходят на нет (становятся фактически равными 0). В результате формально (математически) одна и та же модель описывает совсем разные зависимости.

Косвенный, двухшаговый и трехшаговый методы наименьших квадратов . Как уже отмечалось, разработана масса методов эвристического анализа систем эконометрических уравнений. Они предназначены для решения тех или иных проблем, возникающих при попытках найти численные решения систем уравнений.

Одна из проблем связана с наличием априорных ограничений на оцениваемые параметры. Например, доход домохозяйства может быть потрачен либо на потребление, либо на сбережение. Значит, сумма долей этих двух видов трат априори равна 1. А в системе эконометрических уравнений эти доли могут участвовать независимо. Возникает мысль оценить их методом наименьших квадратов , не обращая внимания на априорное ограничение, а потом подкорректировать. Такой подход называют косвенным методом наименьших квадратов .

Двухшаговый метод наименьших квадратов состоит в том, что оценивают параметры отдельного уравнения системы, а не рассматривают систему в целом. В то же время трехшаговый метод наименьших квадратов применяется для оценки параметров системы одновременных уравнений в целом. Сначала к каждому уравнению применяется двухшаговый метод с целью оценить коэффициенты и погрешности каждого уравнения, а затем построить оценку для ковариационной матрицы погрешностей, После этого для оценивания коэффициентов всей системы применяется обобщенный метод наименьших квадратов .

Менеджеру и экономисту не следует становиться специалистом по составлению и решению систем эконометрических уравнений, даже с помощью тех или иных программных систем, но он должен быть осведомлен о возможностях этого направления эконометрики, чтобы в случае производственной необходимости квалифицированно сформулировать задание для специалистов-эконометриков.

От оценивания тренда (основной тенденции) перейдем ко второй основной задаче эконометрики временных рядов - оцениванию периода ( цикла ).

Глава 6. Эконометрика временных рядов

6.1. Модели стационарных и нестационарных временных рядов, их идентификация

Пусть Рассмотрим временной ряд X(t). Пусть сначала временной ряд принимает числовые значения. Это могут быть, например, цены на батон хлеба в соседнем магазине или курс обмена доллара на рубли в ближайшем обменном пункте. Обычно в поведении временного ряда выявляют две основные тенденции - тренд и периодические колебания.

При этом под трендом понимают зависимость от времени линейного, квадратичного или иного типа, которую выявляют тем или иным способом сглаживания (например, экспоненциального сглаживания) либо расчетным путем, в частности, с помощью метода наименьших квадратов. Другими словами, тренд - это очищенная от случайностей основная тенденция временного ряда.

Временной ряд обычно колеблется вокруг тренда, причем отклонения от тренда часто обнаруживают правильность. Часто это связано с естественной или назначенной периодичностью, например, сезонной или недельной, месячной или квартальной (например, в соответствии с графиками выплаты заплаты и уплаты налогов). Иногда наличие периодичности и тем более ее причины неясны, и задача эконометрика - выяснить, действительно ли имеется периодичность.

Элементарные методы оценки характеристик временных рядов обычно достаточно подробно рассматриваются в курсах "Общей теории статистики" (см., например, учебники ), поэтому нет необходимости подробно разбирать их здесь. (Впрочем, о некоторых современных методах оценивания длины периода и самой периодической составляющей речь пойдет ниже.)

Характеристики временных рядов . Для более подробного изучения временных рядов используются вероятностно-статистические модели. При этом временной ряд X(t) рассматривается как случайный процесс (с дискретным временем) основными характеристиками являются математическое ожидание X(t) , т.е.

дисперсия X(t) , т.е.

и автокорреляционная функция временного ряда X(t)

т.е. функция двух переменных, равная коэффициенту корреляции между двумя значениями временного ряда X(t) и X(s).

В теоретических и прикладных исследованиях рассматривают широкий спектр моделей временных рядов. Выделим сначала стационарные модели. В них совместные функции распределения для любого числа моментов времени k , а потому и все перечисленные выше характеристики временного ряда не меняются со временем . В частности, математическое ожидание и дисперсия являются постоянными величинами, автокорреляционная функция зависит только от разности t-s . Временные ряды, не являющиеся стационарными, называются нестационарными.

Линейные регрессионные модели с гомоскедастичными и гетероскедастичными, независимыми и автокоррелированными остатками. Как видно из сказанного выше, основное - это "очистка" временного ряда от случайных отклонений, т.е. оценивание математического ожидания. В отличие от простейших моделей регрессионного анализа, рассмотренных в главе 5, здесь естественным образом появляются более сложные модели. Например, дисперсия может зависеть от времени. Такие модели называют гетероскедастичными, а те, в которых нет зависимости от времени - гомоскедастичными. (Точнее говоря, эти термины могут относиться не только к переменной "время", но и к другим переменным.)

Далее, в главе 5 предполагалось, что погрешности независимы между собой. В терминах настоящей главы это означало бы, что автокорреляционная функция должна быть вырожденной - равняться 1 при равенстве аргументов и 0 при их неравенстве. Ясно, что для реальных временных рядов так бывает отнюдь не всегда. Если естественный ход изменений наблюдаемого процесса является достаточно быстрым по сравнению с интервалом между последовательными наблюдениями, то можно ожидать "затухания" автокорреляции" и получения практически независимых остатков, в противном случае остатки будут автокоррелированы.

Идентификация моделей. Под идентификацией моделей обычно понимают выявление их структуры и оценивание параметров. Поскольку структура - это тоже параметр, хотя и нечисловой (см. главу 8), то речь идет об одной из типовых задач эконометрики - оценивании параметров.

Проще всего задача оценивания решается для линейных (по параметрам) моделей с гомоскедастичными независимыми остатками. Восстановление зависимостей во временных рядах может быть проведено на основе методов наименьших квадратов и наименьших модулей, рассмотренных в главе 5 моделей линейной (по параметрам) регрессии. На случай временных рядов переносятся результаты, связанные с оцениванием необходимого набора регрессоров, в частности, легко получить предельное геометрическое распределение оценки степени тригонометрического полинома.

Однако на более общую ситуацию такого простого переноса сделать нельзя. Так, например, в случае временного ряда с гетероскедастичными и автокоррелированными остатками снова можно воспользоваться общим подходом метода наименьших квадратов, однако система уравнений метода наименьших квадратов и, естественно, ее решение будут иными. Формулы в терминах матричной алгебры, о которых упоминалось в главе 5, будут отличаться. Поэтому рассматриваемый метод называется "обобщенный метод наименьших квадратов (ОМНК)" (см., например, ).

Замечание. Как уже отмечалось в главе 5, простейшая модель метода наименьших квадратов допускает весьма далекие обобщения, особенно в области системам одновременных эконометрических уравнений для временных рядов. Для понимания соответствующей теории и алгоритмов необходимо профессиональное владение матричной алгеброй. Поэтому мы отсылаем тех, кому это интересно, к литературе по системам эконометрических уравнений и непосредственно по временным рядам , в которой особенно много интересуются спектральной теорией, т.е. выделением сигнала из шума и разложением его на гармоники. Подчеркнем в очередной раз, что за каждой главой настоящей книги стоит большая область научных и прикладных исследований, вполне достойная того, чтобы посвятить ей много усилий. Однако из-за ограниченности объема книги мы вынуждены изложение сделать конспективным.

Предыдущая