Опыт резерфорда по рассеиванию. Опыты Резерфорда по рассеянию альфа-частиц

Классические опыты по изучению строения атома были проведены сэром Эрне́стом Ре́зерфордом в 1911 г. Резерфорд ставил опыты по исследованию рассеяния альфа-частиц тонкими листочками металлической фольги. Воздействие на атомы осуществлялось путем бомбардировки их пучком массивных частиц. Схема опыта приведена на рис. 1.

Тонкая золотая фольга Ф (толщина фольги составляла величину порядка 10 -7 м, на ней размещалось около 400 атомов) помещалась внутри сферического экрана Э. Через отверстие в экране на пластину перпендикулярно падал пучок быстрых альфа-частиц, испускаемых радиоактивным препаратом, содержащимся в свинцовом контейнере Р. Альфа-частицы – это полностью ионизированный атом гелия с массой, равной 4,0015 а.е.м. и зарядом, равным + 2е

(е – величина элементарного электрического заряда). Скорость альфа-частицы составляла величину порядка 10 7 м/c, энергия 4,05 Мэв. При малой толщине фольги столкновения альфа-частиц является практически однократным, т.е. каждая частица сталкивается только с одним атомом, изменяя при этом направление своего полёта.

Внутренние стенки экрана были покрыты люминофором – веществом, в котором возникали вспышки в месте попадания альфа-частиц. Это позволяло регистрировать альфа-частицы устройством М, рассеиваемые атомами на различные углы θ от первоначального направления. Опыты по рассеянию альфа-частиц позволили установить следующие закономерности.

1. Подавляющее большинство альфа-частиц проходит сквозь фольгу практически свободно: они не отклоняются и не теряют энергию.

2. Лишь небольшая доля частиц (≈ 0,01 %, то есть одна десятитысячная) поворачивала назад, то есть изменяла направление движения на угол, больше 90 градусов.

Результаты опытов Резерфорда можно объяснить, исходя из предположения о том, что весь положительный заряд и почти вся масса атома сосредоточены в небольшой области атома – ядре, размеры которого порядка 10 -14 м. Отрицательно заряженные электроны движутся вокруг ядра в огромной (по сравнению с ядром) области, размеры которой порядка 10 -10 м.

Это предположение лежит в основе ядерной модели атома , которую также называют планетарной. Число электронов в атоме равно атомному номеру элемента в периодической системе Менделеева. Кроме того, было показано, что силы, связывающие электроны с ядром, подчинены закону Кулона.

Однако ядерная модель противоречит законам классической электродинамики. На самом деле, если электрон в атоме покоится, он должен упасть на ядро под действием кулоновской силы притяжения. Если электрон вращается вокруг ядра, он должен излучать электромагнитное поле. При этом он теряет свою энергию на излучение, скорость движения уменьшается, и электрон, в конце концов, должен упасть на ядро. Спектры излучения атомов в этом случае должны быть непрерывными, а время жизни атома не должно превышать 10 -7 с. На самом деле атомы стабильны, а спектры излучения атомов дискретны.

Выводы из опыта по рассеиванию альфа-частиц Резерфорда: 1. Существует атомное ядро, т.е. тело малых размеров, в котором сконцентрирована почти вся масса атома и весь положительный заряд. 2. В ядре сконцентрирована почти вся масса атома. 3. Вокруг ядра по замкнутым орбитам вращаются отрицательные частицы- электроны. 4. отрицательный заряд всех электронов распределён по всему объёму атома. Ядерная модель атома:

Слайд 9 из презентации «Опыт Резерфорда, модель атома» . Размер архива с презентацией 174 КБ.

Физика 9 класс

краткое содержание других презентаций

«Строение атома элемента» - Кто открыл явление радиоактивности. Строение. Атом – «неделимый». Резерфорд провел ряд опытов по исследованию строения и состава атомов. Томсон предложил в 1903 г одну из первых моделей строения атома. Анри Беккерель открывает явление радиоактивности. Частица вызывала на экране вспышку. Два события в конце 19 века привели к мысли о сложном строении атома. Строение атома. Планетарная (ядерная) модель.

«Камера Вильсона» - Назначение прибора. Принцип роботы. Усовершенствование. Емкость. Изобретатель прибора. Значение. Камера. Вильсон. Камера Вильсона. Устройство.

«Безопасность атомной энергетики» - Из истории атомной энергетики. Реакция распада ядер урана. Схема работы кипящего ядерного реактора. Безопасность. Схема кипящего ядерного реактора. АЭС имеют больше возможностей в производстве энергии. Атомные электростанции. Вред атомной энергетики. Атомные электростанции на карте России. Ядерный реактор. Атомная энергетика. Термоядерный синтез. Польза и вред атомной энергетики. Атомные ледоколы.

«Физика «Движение»» - Взаимодействие тел. Механика. Закон сохранения в механике. Строение атома. Инертность и масса тел. Скорость при неравномерном движении. Как изменяются координаты. Перемещение при прямолинейном равноускоренном движении. Основы динамики. Работа силы. 2 закон Ньютона. Свободное падение тел. Основы физики. Изучении свойств материи. Вектор. 3 закон Ньютона. Период и частота обращения. Ускорение. Физика-это точная наука.

«Колебания математического маятника» - План урока. Практическое использование колебаний маятника. Галилео Галилей (1564-1642). Гюйгенс Христиан (1629 – 1695). Любое ли тело может совершать колебательные движения. Опыт был выполнен в узком кругу. Иллюстрация механических колебаний на примере маятника Фуко. Старое здание Пизанского университета. Реальный маятник можно считать математическим, если длина нити много больше размеров подвешенного на ней тела.

«Первая космическая скорость» - Решите задачи. Ускорение свободного падении. Скорость, которую необходимо сообщить телу, чтобы оно стало спутником. Представление об ИСЗ. Первая космическая скорость. Условия, при которых тело становится ИСЗ. Искусственные спутники Земли. Определить первую космическую скорость для запуска спутника. Решите задачу. Обращение планет вокруг Солнца.

39. Опыт по рассеянию альфа частиц.

Первая попытка создания модели атома на основе накопленных экспериментальных данных (1903 г.) принадлежит Дж. Томсону. Он считал, что атом представляет собой электронейтральную систему шарообразной формы радиусом, примерно равным 10–10 м. Положительный заряд атома равномерно распределен по всему объему шара, а отрицательно заряженные электроны находятся внутри него (рис. 6.1.1). Для объяснения линейчатых спектров испускания атомов Томсон пытался определить расположение электронов в атоме и рассчитать частоты их колебаний около положений равновесия. Однако эти попытки не увенчались успехом. Через несколько лет в опытах великого английского физика Э. Резерфорда было доказано, что модель Томсона неверна.

Рисунок 6.1.1.

Модель атома Дж. Томсона

Первые прямые эксперименты по исследованию внутренней структуры атомов были выполнены Э. Резерфордом и его сотрудниками Э. Марсденом и Х. Гейгером в 1909–1911 годах. Резерфорд предложил применить зондирование атома с помощью α-частиц, которые возникают при радиоактивном распаде радия и некоторых других элементов. Масса α-частиц приблизительно в 7300 раз больше массы электрона, а положительный заряд равен удвоенному элементарному заряду. В своих опытах Резерфорд использовал α- частицы с кинетической энергией около 5 МэВ (скорость таких частиц очень велика – порядка 107 м/с, но все же значительно меньше скорости света). α-частицы – это полностью ионизированные атомы гелия. Они были открыты Резерфордом в 1899 году при изучении явления радиоактивности. Этими частицами Резерфорд бомбардировал атомы тяжелых элементов (золото, серебро, медь и др.). Электроны, входящие в состав атомов, вследствие малой массы не могут заметно изменить траекторию α-частицы. Рассеяние, то есть изменение направления движения α-частиц, может вызвать только тяжелая положительно заряженная часть атома. Схема опыта Резерфорда представлена на рис. 6.1.2.

Рисунок 6.1.2.

Схема опыта Резерфорда по рассеянию α-частиц. K – свинцовый контейнер с радиоактивным веществом, Э – экран, покрытый сернистым цинком, Ф – золотая фольга, M – микроскоп)

От радиоактивного источника, заключенного в свинцовый контейнер, α-частицы направлялись на тонкую металлическую фольгу. Рассеянные частицы попадали на экран, покрытый слоем кристаллов сульфида цинка, способных светиться под ударами быстрых заряженных частиц. Сцинтилляции (вспышки) на экране наблюдались глазом с помощью микроскопа. Наблюдения рассеянных α-частиц в опыте Резерфорда можно было проводить под различными углами φ к первоначальному направлению пучка. Было обнаружено, что большинство α-частиц проходит через тонкий слой металла, практически не испытывая отклонения. Однако небольшая часть частиц отклоняется на значительные углы, превышающие 30°. Очень редкие α-частицы (приблизительно одна на десять тысяч) испытывали отклонение на углы, близкие к 180°.

Этот результат был совершенно неожиданным даже для Резерфорда. Его представления находилbcm в резком противоречии с моделью атома Томсона, согласно которой положительный заряд распределен по всему объему атома. При таком распределении положительный заряд не может создать сильное электрическое поле, способное отбросить α-частицы назад. Электрическое поле однородного заряженного шара максимально на его поверхности и убывает до нуля по мере приближения к центру шара. Если бы радиус шара, в котором сосредоточен весь положительный заряд атома, уменьшился в n раз, то максимальная сила отталкивания, действующая на α-частицу, по закону Кулона возросла бы в n2 раз. Следовательно, при достаточно большом значении n α-частицы могли бы испытать рассеяние на большие углы вплоть до 180°. Эти соображения привели Резерфорда к выводу, что атом почти пустой, и весь его положительный заряд сосредоточен в малом объеме. Эту часть атома Резерфорд назвал атомным ядром. Так возникла ядерная модель атома. Рис. 6.1.3 иллюстрирует рассеяние α-частицы в атоме Томсона и в атоме Резерфорда.

А томные спе ктры, спектры оптические, получающиеся при испускании или поглощении света (электромагнитных волн) свободными или слабо связанными атомами; такими спектрами обладают, в частности, одноатомные газы и пары. А. с. являются линейчатыми - они состоят из отдельных спектральных линий. А. с. наблюдаются в виде ярких цветных линий при свечении газов или паров в электрической дуге или разряде (спектры испускания) и в виде тёмных линий (спектров поглощения). Каждая спектральная линия характеризуется определённой частотой колебаний v испускаемого или поглощаемого света и соответствует определённому квантовому переходу между уровнями энергии E i и E k атома согласно соотношению: hv = E i - E k , где h - Планка постоянная). Наряду с частотой спектральную линию можно характеризовать длиной волны l = c/v, волновым числом 1/l = v/c (c - скорость света) и энергией фотона hv.

А. с. возникают при переходах между уровнями энергии внешних электронов атома и наблюдаются в видимой, ультрафиолетовой и близкой инфракрасной областях. Такими спектрами обладают как нейтральные, так и ионизованные атомы; их часто называют соответственно дуговыми и искровыми спектрами (нейтральные атомы легко возбуждаются и дают спектры испускания в электрических дугах, а положительные ионы возбуждаются труднее и дают спектры испускания преимущественно в искровых электрических разрядах). Спектры ионизованных атомов смещены по отношению к спектрам нейтральных атомов в область больших частот, т. е. в ультрафиолетовую область. Это смещение тем больше, чем выше кратность ионизации атома - чем больше электронов он потерял. Спектры нейтрального атома и его последовательных ионов обозначают в спектроскопии цифрами I, II, III, ... В реально наблюдаемых спектрах часто присутствуют одновременно линии нейтрального и ионизованных атомов; так говорят, например, о линиях FeI, FeII, FeIII в спектре железа, соответствующих Fe, Fe + , Fe 2+ .

Линии А. с. образуют закономерные группы, называются спектральными сериями. Промежутки между линиями в серии убывают в сторону коротких длин волн, и линии сходятся к границе серии. Наиболее прост спектр атома водорода. Волновые числа линий его спектра с огромной точностью определяются формулой Бальмера:

1/l = R(1/n 2 1 - 1/n 2 2), где n 1 и n 2 значения главного квантового числа для уровней энергии, между которыми происходит квантовый переход

Резерфорд предложил применить зондирование атома с помощью?-частиц, которые возникают при радиоактивном распаде радия и некоторых других элементов. Масса?-частиц приблизительно в 7300 раз больше массы электрона, а положительный заряд равен удвоенному элементарному заряду. В своих опытах Резерфорд использовал?-частицы с кинетической энергией около 5 МэВ (скорость таких частиц очень велика – порядка 107 м/с, но она все же значительно меньше скорости света). ?-частицы – это полностью ионизированные атомы гелия. Этими частицами Резерфорд бомбардировал атомы тяжелых элементов (золото, серебро, медь и др.). Электроны, входящие в состав атомов, вследствие малой массы не могут заметно изменить траекторию?-частицы. Рассеяние, то есть изменение направления движения?-частиц, может вызвать только тяжелая положительно заряженная часть атома.
От радиоактивного источника, заключенного в свинцовый контейнер, ?-частицы направлялись на тонкую металлическую фольгу. Рассеянные частицы попадали на экран, покрытый слоем кристаллов сульфида цинка, способных светиться под ударами быстрых заряженных частиц. Вспышки на экране наблюдались глазом с помощью микроскопа. Было обнаружено, что большинство?-частиц проходит через тонкий слой металла, практически не испытывая отклонения. Однако небольшая часть частиц отклоняется на значительные углы, превышающие 30°. Очень редкие?-частицы (приблизительно одна на десять тысяч) испытывали отклонение на углы, близкие к 180°.
Этот результат был совершенно неожиданным даже для Резерфорда. Он находился в резком противоречии с моделью атома Томсона, согласно которой положительный заряд распределен по всему объему атома. При таком распределении положительный заряд не может создать сильное электрическое поле, способное отбросить?-частицы назад. Резерфорд сделал вывод, что атом почти пустой, и весь его положительный заряд сосредоточен в малом объеме. Эту часть атома Резерфорд назвал атомным ядром. Так возникла ядерная модель атома. Вскоре опираясь на классические представления о движении микрочастиц, Резерфорд предложил планетарную модель атома. Согласно этой модели, в центре атома располагается положительно заряженное ядро, в котором сосредоточена почти вся масса атома. Атом в целом нейтрален. Вокруг ядра, подобно планетам, вращаются под действием кулоновских сил со стороны ядра электроны Находиться в состоянии покоя электроны не могут, так как они упали бы на ядро.

Постулаты Бора.

Постулаты Бора:

Существуют стационарные состояния атома, находясь в которых он не излучает энергию. Для таких состояний электрон в атоме, двигаясь по круговой орбите, должен иметь квантованные значения момента импульса, удовлетворяющие условию: где m0 – масса электрона, V – скорость его движения на орбите радиуса r, - постоянная Планка.

При переходе атома из стационарного состояния с номером n в стационарное состояние с номером m испускается или поглощается один фотон с энергией:

где Еn и Еm – энергия электрона на соответствующих орбитах.

22. Опыты Резерфорда по рассеянию -частиц. Ядерная модель атома. Квантовые постулаты Бора

Слово «атом» в переводе с греческого означает «неделимый». Под атомом долгое время, вплоть до начала XX в., подразумевали мельчайшие неделимые частицы вещества. К началу XX в. в науке накопилось много фактов, говоривших о сложном строении атомов.

Большие успехи в исследовании строения атомов были достигнуты в опытах английского ученого Эрнеста Резерфорда по рассеянию -частиц при прохождении через тонкие слои вещества. В этих опытах узкий пучок -частиц, испускаемых радиоактивным веществом, направлялся на тонкую золотую фольгу. За фольгой помещался экран, способный светиться под ударами быстрых частиц. Было обнаружено, что оолынинство -частиц отклоняется от прямолинейного распространения после прохождения фольги, т. е. рассеивается, а некоторые -частицы вообще отбрасываются назад. Рассеяние -частиц Резерфорд объяснил тем, что положительный заряд не распределен равномерно в шаре радиусом 10 -10 м, как предполагали ранее, а сосредоточен в центральной части атома - атомном ядре. При прохождении около ядра -частица, имеющая положительный заряд, отталкивается от него, а при попадании в ядро - отбрасывается в противоположном направлении. Так ведут себя частицы, имеющие одинаковый заряд, следовательно, существует центральная положительно зараженная часть атома, в которой сосредоточена значительная масса атома. Расчеты показали, что для объяснения опытов нужно принять радиус атомного ядра равным примерно 10 -15 м.

Резерфорд предположил, что атом устроен подобно планетарной системе. Суть модели строения атома по Резерфорду заключается в следующем: в центре атома находится положительно заряженное ядро, в котором сосредоточена вся масса, вокруг ядра по круговым орбитам на больших расстояниях вращаются электроны (как планеты вокруг Солнца). Заряд ядра совпадает с номером химического элемента в таблице Менделеева.

Планетарная модель строения атома по Резерфорду не смогла объяснить ряд известных фактов: электрон, имеющий заряд> должен за счет кулоновских сил притяжения упасть на ядро, а атом - это устойчивая система; при движении по круговой орбите, приближаясь к ядру, электрон в атоме должен излучать электромагнитные волны всевозможных частот, т. е. излучаемый свет должен иметь непрерывный спектр, на практике же получается иное: электроны атомов излучают свет, имеющий линейчатый спектр. Разрешить противоречия планетарной ядерной модели строения атома первым попытался датский физик Нильс Бор.

В основу своей теории Бор положил два постулата. Первый постулат: атомная система может находиться только в особых стационарных или квантовых состояниях, каждому из которых соответствует своя энергия; в стационарном состоянии атом не излучает.

Это означает, что электрон (например, в атоме водорода) может находиться на нескольких вполне определенных орбитах. Каждой орбите электрона соответствует вполне определенная энергия.