Классифицируйте следующие основания по кислотности koh. Основания: классификация и химические свойства

2. ОСНОВАНИЯ

Основания это сложные вещества, состоящие из атомов металлов и одной или нескольких гидроксогрупп (ОН -).

С точки зрения теории электролитической диссоциации это электролиты (вещества, растворы или расплавы которых проводят электрический ток), диссоциирующие в водных растворах на катионы металлов и анионы только гидроксид - ионов ОН - .

Растворимые в воде основания называются щелочами. К ним относятся основания, которые образованы металлами 1-й группы главной подгруппы (LiOH , NaOH и другие) и щелочноземельными металлами (Са (ОН) 2 , Sr (ОН) 2 , Ва (ОН) 2). Основания, образованные металлами других групп периодической системы в воде практически не растворяются. Щелочи в воде диссоциируют полностью:

NaOH ® Na + + OH - .

Многокислотные основания в воде диссоциируют ступенчато:

Ba ( OH) 2 ® BaOH + + OH - ,

Ba ( OH) + Ba 2+ + OH - .

C тупенчатой диссоциацией оснований объясняется образование основных солей.

Номенклатура оснований.

Основания называются следующим образом: сначала произносят слово «гидроксид », а затем металл, который его образует. Если металл имеет переменную валентность, то она указывается в названии.

КОН – гидроксид калия;

Ca ( OH ) 2 – гидроксид кальция;

Fe ( OH ) 2 – гидроксид железа (II );

Fe ( OH ) 3 – гидроксид железа (III );

При составлении формул оснований исходят из того, что молекула электронейтральна . Гидроксид – ион всегда имеет заряд (–1). В молекуле основания их число определяется положительным зарядом катиона металла. Гидрокогруппа заключается в круглые скобки, а выравнивающий заряды индекс ставится справа внизу за скобками:

Ca +2 (OH ) – 2 , Fe 3+( OH ) 3 - .

по следующим признакам:

1. По кислотности (по числу групп ОН - в молекуле основания): однокислотные – NaOH , KOH , многокислотные – Ca (OH ) 2 , Al (OH ) 3 .

2. По растворимости: растворимые (щелочи) – LiOH , KOH , нерастворимые – Cu (OH ) 2 , Al (OH ) 3 .

3. По силе (по степени диссоциации):

а) сильные (α = 100 %) – все растворимые основания NaOH , LiOH , Ba (OH ) 2 , малорастворимый Ca (OH ) 2 .

б) слабые (α < 100 %) – все нерастворимые основания Cu (OH ) 2 , Fe (OH ) 3 и растворимое NH 4 OH .

4. По химическим свойствам: основные – Са (ОН) 2 , Na ОН; амфотерные – Zn (ОН) 2 , Al (ОН) 3 .

Основания

Это гидроксиды щелочных и щелочноземельных металлов (и магния), а также металлов в минимальной степени окисления (если она имеет переменное значение).

Например: NaOH , LiOH , Mg ( OH ) 2 , Ca (OH ) 2 , Cr (OH ) 2 , Mn (OH ) 2 .

Получение

1. Взаимодействие активного металла с водой:

2Na + 2H 2 O → 2NaOH + H 2

Ca + 2H 2 O → Ca(OH) 2 + H 2

Mg + 2 H 2 O Mg( OH ) 2 + H 2

2. Взаимодействие основных оксидов с водой (только для щелочных и щелочноземельных металлов):

Na 2 O + H 2 O → 2NaOH,

CaO + H 2 O → Ca(OH) 2 .

3. Промышленным способом получения щелочей является электролиз растворов солей:

2NaCI + 4H 2 O 2NaOH + 2H 2 + CI 2

4. Взаимодействие растворимых солей со щелочами, причем для нерастворимых оснований это единственный способ получения:

Na 2 SO 4 + Ba (OH) 2 → 2NaOH + BaSO 4

MgSO 4 + 2NaOH → Mg(OH) 2 + Na 2 SO 4.

Физические свойства

Все основания являются твердыми веществами. В воде нерастворимы , кроме щелочей. Щелочи – это белые кристаллические вещества, мылкие на ощупь, вызывающие сильные ожоги при попадании на кожу. Поэтому они называются «едкими». При работе со щелочами необходимо соблюдать определенные правила и использовать индивидуальные средства защиты (очки, резиновые перчатки, пинцеты и др.).

Если щелочь попала на кожу необходимо промыть это место большим количеством воды до исчезновения мылкости, а затем нейтрализовать раствором борной кислоты.

Химические свойства

Химические свойства оснований с точки зрения теории электролитической диссоциации обусловлены наличием в их растворах избытка свободных гидроксид –

ионов ОН - .

1. Изменение цвета индикаторов:

фенолфталеин – малиновый

лакмус – синий

метиловый оранжевый – желтый

2. Взаимодействие с кислотами с образованием соли и воды (реакция нейтрализации):

2NaOH + H 2 SO 4 → Na 2 SO 4 + 2H 2 O,

Растворимое

Cu( OH) 2 + 2HCI → CuCI 2 + 2H 2 O.

Нерастворимое

3. Взаимодействие с кислотными оксидами:

2 NaOH + SO 3 → Na 2 SO 4 + H 2 O

4. Взаимодействие с амфотерными оксидами и гидроксидами :

а) при плавлении:

2 NaOH + AI 2 O 3 2 NaAIO 2 + H 2 O ,

NaOH + AI(OH) 3 NaAIO 2 + 2H 2 O.

б ) в растворе :

2NaOH + AI 2 O 3 +3H 2 O → 2Na[ AI(OH) 4 ],

NaOH + AI(OH) 3 → Na.

5. Взаимодействие с некоторыми простыми веществами (амфотерными металлами, кремнием и другими):

2NaOH + Zn + 2H 2 O → Na 2 [ Zn(OH) 4 ] + H 2

2NaOH + Si + H 2 O → Na 2 SiO 3 + 2H 2

6. Взаимодействие с растворимыми солями с образованием осадков:

2NaOH + CuSO 4 → Cu(OH) 2 + Na 2 SO 4 ,

Ba ( OH) 2 + K 2 SO 4 → BaSO 4 + 2KOH.

7. Малорастворимые и нерастворимые основания разлагаются при нагревании:

Ca( OH) 2 CaO + H 2 O,

Cu( OH) 2 CuO + H 2 O.

голубой цвет черный цвет

Амфотерные гидроксиды

Это гидроксиды металлов (Be (OH ) 2 , AI (OH ) 3 , Zn (OH ) 2) и металлов в промежуточной степени окисления (С r (OH ) 3, Mn (OH ) 4).

Получение

Амфотерные гидроксиды получают взаимодействием растворимых солей со щелочами взятых в недостатке или эквивалентном количестве, т.к. в избытке они растворяются:

AICI 3 + 3NaOH → AI(OH) 3 +3NaCI.

Физические свойства

Это твердые вещества, практически нерастворимые в воде. Zn ( OH ) 2 – белый, Fe (ОН) 3 – бурый цвет.

Химические свойства

Амфотерные гидроксиды проявляют свойства оснований и кислот, поэтому взаимодействуют как с кислотами, так и с основаниями.

1. Взаимодействие с кислотами с образованием соли и воды:

Zn( OH) 2 + H 2 SO 4 → ZnSO 4 + 2H 2 O.

2. Взаимодействие с растворами и расплавами щелочей с образованием соли и воды:

AI( OH) 3 + NaOH Na,

Fe 2 (SO 4) 3 + 3H 2 O,

2Fe( OH) 3 + Na 2 O 2NaFeO 2 + 3H 2 O.

Лабораторная работа № 2

Получение и химические свойства оснований

Цель работы : ознакомиться с химическими свойствами оснований и способами их получения.

Посуда и реактивы : пробирки, спиртовка. Набор индикаторов, магниевая лента, растворы солей алюминия, железа, меди, магния; щелочь(NaOH , К OH ), дистиллированная вода.

Опыт № 1. Взаимодействие металлов с водой.

В пробирку налить 3–5 см 3 воды и опустить в нее несколько кусочков мелко нарезанной магниевой ленты. Нагреть на спиртовке 3–5 мин, охладить и добавить туда 1–2 капли раствора фенолфталеина. Как изменился цвет индикатора? Сравнить с пунктом 1 на с. 27. Написать уравнение реакции. Какие металлы взаимодействуют с водой?

Опыт № 2. Получение и свойства нерастворимых

оснований

В пробирки с разбавленными растворами солей MgCI 2, FeCI 3 , CuSO 4 (5–6 капель) внести по 6–8 капель разбавленного раствора щелочи NaOH до образования осадков. Отметить их окраску. Записать уравнения реакций.

Разделить полученный синий осадок Cu (OH ) 2 на две пробирки. В одну из них добавить 2–3 капли разбавленного раствора кислоты, в другую _ столько же щелочи. В какой пробирке наблюдалось растворение осадка? Написать уравнение реакции.

Повторить этот опыт с двумя другими гидроксидами , полученными по обменным реакциям. Отметить наблюдаемые явления, записать уравнения реакций. Сделать общий вывод о способности оснований взаимодействовать с кислотами и щелочами.

Опыт№ 3. Получение и свойства амфотерных гидроксидов

Повторить предыдущий опыт с раствором соли алюминия (AICI 3 или AI 2 (SO 4 ) 3). Наблюдать образование белого творожистого осадка гидроксида алюминия и растворение его при прибавлении как кислоты, так и щелочи. Записать уравнения реакций. Почему гидроксид алюминия обладает свойствами как кислоты, так и основания? Какие еще амфотерные гидроксиды вы знаете?

ЦЕЛИ УРОКА:

  • Образовательная : изучить основания, их классификацию, способы получения и свойства.
  • Развивающая : способствовать закреплению знаний о классах неорганических соединений, развить и углубить представление о гидроксидах.
  • Воспитательная: привить интерес к предмету химии, соблюдать правила ТБ при обращении. с основаниями (щелочами).

Оборудование: мультимедиа, компьютер,задания, ПСХЭ, таблица растворимости, щелочи, хлорид меди, индикаторы.

Ход урока

Организационный момент. Проверка домашнего задания.

I. Мотивация урока.

Учитель: Чем можно заменить шампунь, мыло?

Щелок - это консистенция из золы, настоянной на воде. Щелок в экопоселении используется для купания и стирки. В отличие от различных продающихся в магазинах моющих средств, это полностью природное вещество! Мытье волос золой - одно из старинных средств, применявшихся нашими прабабушками. Берёзовая зола - обладает щелочными свойствами вследствие содержания поташа.

II. Объявление темы урока. Целеполагание.

Учитель.Тема урока: "Основания, их классификация и свойства".

III. Актуализация знаний.

Гидроксиды - соединения, состоящие из атомов металлов и гидроксид-ионов.

Основания с точки зрения ТЭД - это электролиты, которые в водных растворах диссоциируют на катионы металла и гидроксид - анионы.

NaOH <-> Na + + OH -

Ba(OH) 2 <-> Ba +2 + 2OH -

IV. Изучение нового материала. Осознание и осмысление.

Учитель. Изучим классификацию оснований:

а) По растворимости в воде: растворимые и нерастворимые

б) По кислотности: однокислотные и двухкислотные

в) По степени электролитической диссоциации: сильные и слабые

Если в соль добавить щёлочь,
На пробирку посмотреть -
Синий выпадет осадок -
Основания- гидроксида меди II.

  • Fe(OH) 3 красно-бурый,
  • Сr(OH) 3 - cеро-зеленый,
  • Co(OH) 2 - темно-фиолетовый,
  • Ni(OH) 2 - светло-зеленый.

Учитель. Посмотрите на физические свойства хозяйственного мыло. Щелочи так же мягкие и мылкие на ощупь, изменяют окраску индикаторов. Проведём эксперимент:

Фенолфталеин (бесцв.) + щёлочь -> малиновая окраска

Лакмус (фиолет.) + щёлочь -> синяя окраска

NaOH и КОН - сильные щелочи, при обращении с которыми необходимо соблюдать ТБ.

3. Способы получения оснований

А) Активный металл и вода

Б) основной оксид и вода

(Самостоятельно написать уравнения химических реакций)

4. Рассмотрим химические свойства оснований

А) с кислотами

Б) с кислотными оксидами

В) с амфотерными оксидами

Г) с растворимыми солями

Д) изменяют цвет индикаторов. (Дем. опыт)

А). Основание + кислота > соль + вода

(реакция обмена)

2NaOH + H 2 SO 4 -> Na 2 SO4 + 2H 2 O

OH - + H + -> H 2 O

Cu(OH) 2 + 2HCl -> CuCl 2 + 2H 2 O

Cu(OH) 2 + 2H + -> Cu +2 + 2H 2 O

Б) Основание + кислотный оксид -> соль + вода (реакция обмена)

Р 2 О 5 + 6КОН -> 2К 3 РО 4 + 3Н 2 О

Р 2 О 5 + 6OH - -> 2РО 4 3- + 3Н 2 О

2NaOH + N 2 O 5 -> 2NaNO 3 + Н 2 О

2OH - + N 2 O 5 -> 2NO 3 - + Н 2 О

Учитель. Взаимодействие щелочей с солями сопровождается образованием новой соли и нового основания и подчиняется закону Бертолле. Закон Бертолле основной закон направления обратимых хим. взаимодействий, который можно формулировать так: всякий химический процесс протекает в сторону максимального образования тех продуктов, которые во время реакции выходят из сферы взаимодействия.

В). Щёлочь + соль > новое основание + новая соль (реакция обмена)

Г). Нерастворимое основание -> оксид металла + вода (при t°С)

(реакция разложения)

Fe(OH) 2 -> FeO + H 2 O

Cu(OH) 2 -> CuO + H 2 O

Д) Изменяют цвет индикатор

5. ОСОБЫЕ СВОЙСТВА ОСНОВАНИЙ

1. Качественная реакция на Са(ОН) 2 - помутнение известковой воды:

Качественные реакции на ион Ва +2:

V. Закрепление изученного материала

Учитель. Для закрепления материала выполним задания.

1. По таблице растворимости солей, кислот и оснований в воде, найдите растворимые,труднорастворимые и малорастворимые основания.

2. Составьте молекулярные уравнения реакций:

3. Напишите уравнения реакций, характеризующие химические свойства гидроксида калия.

Учитель.Выполните тестовые задания:

1-вариант:
1. Формулы только оснований приведены в ряду
а) Na 2 CO 3 , NaOH, NaCl
б) KNO 3 , HNO 3 , KОН
в) KОН, Mg(OH) 2 , Cu(OH) 2
г) HCl, BaCl 2 , Ba(OH) 2
2. Формулы только щелочей приведены в ряду
а) Fe(OH) 3 , NaOH, Ca(OH) 2
б) KOH, LiOH, NaOH
в) KOH, Mg(OH) 2 , Cu(OH) 2
г) Al(OH) 3 , Fe(OH) 2 , Ba(OH) 2
3. Из указанных соединений нерастворимым в воде основанием является
а) NaOH
б) Ва(ОН) 2
в) Fe(OH) 2
г) KOH
4. Из указанных соединений щелочью является
а) Fe(OH) 2
б) LiOH
в) Mg(OH) 2
г) Cu(OH) 2

2-Вариант:
1. Металл, который, реагируя с водой, образует щелочь, - это
а) железо
б) медь
в) калий
г) алюминий
2. Оксид, который при взаимодействии с водой образует щелочь, - это
а) оксид алюминия
б) оксид лития
в) оксид свинца(II)
г) оксид марганца(II)
3. При взаимодействии основного оксида с водой образуется основание
а) Аl(ОН) 3
б) Ва(ОН) 2
в) Cu(ОН) 2
г) Fe(OH) 3
4. Из перечисленных уравнений химических реакций выберите уравнение реакции обмена.
а) 2H 2 O = 2H 2 + O 2
б) HgCl 2 + Fe = FeCl 2 + Hg
в) ZnCl 2 + 2KOH = Zn(OH) 2 + 2KCl
г) CaO + CO 2 = CaCO 3
Ответы: 1-вариант: 1-В, 2-Б, 3-В, 4-Б.; 2-вариант: 1-В,2-Б,3-Б,4-В.

VI. Подведение итогов урока.

Учитель. Какой общий вывод можно сделать, изучив состав и свойства оснований?

Учащиеся делают вывод, что свойства оснований зависят от их строения, и записывают его в тетрадь.

Выставление оценок.

Домашнее задание .с.217-218 №1-5

Неорганические соединения, содержащие гидроксильные группы или гидроксид-анионы, связанные с атомом металла или неметалла, называются гидроксидами . В зависимости от свойств гидроксиды делят на кислотные (кислородсодержащие кислоты), основные (основания) и амфотерные, проявляющие свойства кислоты или основания в зависимости от партнера по реакции:

Таким образом, основания - это основные гидроксиды, образующие соли при взаимодействии с кислотами , например:

NaOH + HCl = NaCl + H 2 O

Амфотерные гидроксиды образуют соли при взаимодействии как с кислотами, так и с основаниями :

Al(OH) 3 + 3HCl = AlCl 3 + 3H 2 O;

Al(OH) 3 + 3KOH = K 3

Амфотерные гидроксиды образуют элементы, образующие амфотерные оксиды: цинк, алюминий, хром(III) и др.

В зависимости от числа гидроксильных групп, способных нейтрализовать кислоты, основания делят на однокислотные - NaOH, двухкислотные - Ba(OH) 2 и трехкислотные, например, Cr(OH) 3 . Кроме этого выделяют в отдельные группы основания, нерастворимые в воде и щелочи - сильные основания, растворимые в воде. К щелочам относят гидроксиды щелочных и щелочноземельных металлов.

Гидроксиды называют следующим образом: гидроксид элемента(степень окисления). Для элементов, проявляющих постоянную валентность, степень окисления обычно не указывают. Примеры: NaOH - гидроксид натрия, Ba(OH) 2 - гидроксид бария, Cr(OH) 3 - гидроксид хрома(III).

Общие методы получения оснований

1. Взаимодействие щелочного или щелочноземельного металла с водой, например:

2Na + 2H 2 O = 2NaOH + H 2 

2. Взаимодействие оксидов щелочных и щелочноземельных металлов с водой:

CaO + H 2 O = Ca(OH) 2

3. Электролиз водных растворов солей щелочных или щелочноземельных металлов:

эл.ток

2NaCl + 2H 2 O = 2NaOH + H 2  + Cl 2 

катод анод

4. Нерастворимые в воде основания получают взаимодействием растворимых солей металлов с растворами щелочей:

CuCl 2 + 2NaOH = Cu(OH) 2  + 2NaCl

5. Необратимый гидролиз солей также может быть использован как метод получения малорастворимых оснований, например:

2AlCl 3 + 3Na 2 CO 3 + 3H 2 O = 2Al(OH) 3  + 6NaCl + 3CO 2 

Общие химические свойства оснований . Малорастворимые в воде слабые основания термически неустойчивы и при нагревании легко отщепляют воду, образуя оксид металла:

Cu(OH) 2 CuO + H 2 O

Основания, содержащие металл в промежуточной степени окисления, могут окисляться кис­лородом или другими окислителями, например:

4Fe(OH) 2 + O 2 + 2H 2 O = 4Fe(OH) 3

Некоторые неметаллы (хлор, сера, фосфор) в водных растворах щелочей подвергаются диспропорционированию:

Cl 2 + 2KOH = KClO + KCl + H 2 O;

3S + 6KOH 2K 2 S + K 2 SO 3 + 3H 2 O

Металлы, образующие амфотерные оксиды и гидроксиды, а также кремний, растворяются в водных растворах щелочей с выделением водорода:

2Al + 6KOH + 6H 2 O = 2K 3 + 3H 2 ;

Si + 2NaOH + H 2 O = Na 2 SiO 3 + 2H 2 

Основания, как основные гидроксиды, реагируют с кислотами и с кислотными оксидами с образованием солей:

Сa(OH) 2 + 2HCl = CaCl 2 + 2H 2 O;

Ca(OH) 2 + CO 2 = CaCO 3 + H 2 O

Основания, растворимые в воде (щелочи), реагируют с солями с образованием малорастворимых гидроксидов, например:

FeCl 2 + 2NaOH = Fe(OH) 2  + 2NaCl

а) получение оснований .

1) Общим методом получения оснований является реакция обмена, с помощью которой могут быть получены как нерастворимые, так и растворимые основания:

CuSO 4 + 2 КОН = Сu(ОН) 2  + K 2 SO 4 ,

К 2 СО 3 + Ва(ОН) 2 = 2КОН + ВаСО 3 .

При получении этим методом растворимых оснований в осадок выпадает нерастворимая соль.

2) Щелочи могут быть также получены взаимодействием щелочных и щелочноземельных металлов или их оксидов с водой:

2Li + 2Н 2 О = 2LiOH + H 2 ,

SrO + H 2 O = Sr(OH) 2 .

3) Щелочи в технике обычно получают электролизом водных растворов хлоридов:

б) химические свойства оснований .

1) Наиболее характерной реакцией оснований является их взаимодействие с кислотами - реакция нейтрализации. В нее вступают как щелочи, так и нерастворимые основания:

NaOH + HNO 3 = NaNO 3 + H 2 O,

Cu(OH) 2 + H 2 SO 4 = СuSО 4 + 2 H 2 O .

2) Выше было показано, как щелочи взаимодействуют с кислотными и амфотерными оксидами.

3) При взаимодействии щелочей с растворимыми солями образуется новая соль и новое основание. Такая реакция идет до конца только в том случае, когда хотя бы одно из полученных веществ выпадает в осадок.

FeCl 3 + 3 KOH = Fe(OH) 3  + 3 KCl

4) При нагревании большинство оснований, за исключением гидроксидов щелочных металлов, разлагаются на соответствующий оксид и воду:

2 Fе(ОН) 3 = Fе 2 О 3 + 3 Н 2 О,

Са(ОН) 2 = СаО + Н 2 О.

КИСЛОТЫ – сложные вещества, молекулы которых состоят из одного или нескольких атомов водорода и кислотного остатка. Состав кислот может быть выражен общей формулой Н х А, где А – кислотный остаток. Атомы водорода в кислотах способны замещаться или обмениваться на атомы металлов, при этом образуются соли.

Если кислота содержит один такой атом водорода, то это одноосновная кислота (HCl - соляная, HNO 3 - азотная, HСlO - хлорноватистая, CH 3 COOH - уксусная); два атома водорода - двухосновные кислоты: H 2 SO 4 – серная, H 2 S - сероводородная; три атома водорода - трехосновные: H 3 PO 4 – ортофосфорная, H 3 AsO 4 – ортомышьяковая.

В зависимости от состава кислотного остатка кислоты подразделяют на бескислородные (H 2 S, HBr, HI) и кислородсодержащие (H 3 PO 4 , H 2 SO 3 , H 2 CrO 4). В молекулах кислородсодержащих кислот атомы водорода связаны через кислород с центральным атомом: Н – О – Э. Названия бескислородных кислот образуются из корня русского названия неметалла, соединительной гласной -о - и слова «водородная» (H 2 S – сероводородная). Названия кислородсодержащим кислотам дают так: если неметалл (реже металл), входящий в состав кислотного остатка, находится в высшей степени окисления, то к корню русского названия элемента добавляют суффиксы -н- , -ев-, или -ов- и далее окончание -ая- (H 2 SO 4 – серная, H 2 CrO 4 - хромовая). Если степень окисления центрального атома ниже, то используется суффикс -ист- (H 2 SO 3 – сернистая). Если неметалл образует ряд кислот, используют и другие суффиксы (HClO – хлорноватист ая, HClO 2­ – хлорист ая, HClO 3 – хлорноват ая, HClO 4 – хлорн ая).

С
точки зрения теории электролитической диссоциации, кислоты – электролиты, диссоциирующие в водном растворе с образованием в качестве катионов только ионов водорода:

Н х А хН + +А х-

Наличием Н + -ионов обусловлено изменение окраски индикаторов в растворах кислот: лакмус (красный), метилоранж (розовый).

Получение и свойства кислот

а) получение кислот .

1) Бескислородные кислоты могут быть получены при непосредственном соединении неметаллов с водородом и последующим растворением соответствующих газов в воде:

2) Кислородсодержащие кислоты нередко могут быть получены при взаимодействии кислотных оксидов с водой.

3) Как бескислородные, так и кислородсодержащие кислоты можно получить по реакциям обмена между солями и другими кислотами:

ВаВr 2 + H 2 SO 4 = ВаSО 4 + 2 HBr ,

CuSO 4 + H 2 S = H 2 SO 4 + CuS ,

FeS+ H 2 SO 4 (paзб.) = H 2 S + FeSO 4 ,

NaCl (тв.)+ Н 2 SO 4 (конц.) = HCl + NaHSO 4 ,

AgNO 3 + HCl = AgCl + HNO 3 ,

4) В ряде случаев для получения кислот могут быть использованы окислительно-восстановительные реакции:

3Р + 5НNО 3 + 2Н 2 О = 3Н 3 РO 4 + 5NO 

б) химические свойства кислот .

1) Кислоты взаимодействуют с основаниями и амфотерными гидроксидами. При этом практически нерастворимые кислоты (H 2 SiO 3 , H 3 BO 3) могут реагировать только с растворимыми щелочами.

H 2 SiO 3 +2NaOH=Na 2 SiO 3 +2H 2 O

2) Взаимодействие кислот с основными и амфотерными оксидами рассмотрено выше.

3) Взаимодействие кислот с солями – это обменная реакция с образованием соли и воды. Эта реакция идет до конца, если продуктом реакции является нерастворимое или летучее вещество, либо слабый электролит.

Ni 2 SiO 3 +2HCl=2NaCl+H 2 SiO 3

Na 2 CO 3 +H 2 SO 4 =Na 2 SO 4 +H 2 O+CO 2 

4) Взаимодействие кислот с металлами – окислительно-восстановительный процесс. Восстановитель – металл, окислитель – ионы водорода (кислоты-неокислители: HCl, HBr, HI, H 2 SO 4(разбавл), H 3 PO 4) или анион кислотного остатка (кислоты-окислители: H 2 SO 4(конц) , HNO 3­(конц и разб)). Продуктами реакции взаимодействия кислот-неокислителей с металлами, стоящими в ряду напряжений до водорода, являются соль и газообразный водород:

Zn+H 2 SO 4(разб) =ZnSO 4 +H 2 

Zn+2HCl=ZnCl 2 +H 2 

Кислоты окислители взаимодействуют почти со всеми металлами, включая и малоактивные (Cu, Hg, Ag), при этом образуются продукты восстановления аниона кислоты, соль и вода:

Сu + 2Н 2 SO 4 (конц.) = CuSO 4 + SO 2 + 2 Н 2 O,

Рb + 4НNО 3(конц) = Pb(NO 3) 2 +2NO 2 + 2Н 2 O

АМФОТЕРНЫЕ ГИДРОКСИДЫ проявляют кислотно-основную двойственность: с кислотами они реагируют как основания:

2Cr(OH) 3 + 3H 2 SO 4 = Cr 2 (SO 4) 3 + 6H 2 O,

а с основаниями – как кислоты:

Cr(OH) 3 + NaOH = Na (реакция протекает в растворе щелочи);

Сr(OH) 3 +NaOH =NaCrO 2 +2H 2 O (реакция протекает между твердыми веществами при сплавлении).

С сильными кислотами и основаниями амфотерные гидроксиды образуют соли.

Как и другие нерастворимые гидроксиды, амфотерные гидроксиды разлагаются при нагревании на оксид и воду:

Be(OH) 2 = BeO+H 2 O.

СОЛИ – ионные соединения, состоящие из катионов металлов (или аммония) и анионов кислотных остатков. Любую соль можно рассматривать как продукт реакции нейтрализации основания кислотой. В зависимости от того, в каком соотношении взяты кислота и основание, получаются соли: средние (ZnSO 4 , MgCl 2) – продукт полной нейтрализации основания кислотой, кислые (NaHCO 3 , KH 2 PO 4) – при избытке кислоты, основные (CuOHCl, AlOHSO 4) – при избытке основания.

Названия солей по международной номенклатуре образуют из двух слов: названия аниона кислоты в именительном падеже и катиона металла в родительном с указанием степени его окисления, если она переменная, римской цифрой в скобках. Например: Cr 2 (SO 4) 3 – сульфат хрома (III), AlCl 3 – хлорид алюминия. Названия кислых солей образуют добавлением слова гидро- или дигидро- (в зависимости от числа атомов водорода в гидроанионе): Ca(HCO 3) 2 – гидрокарбонат кальция, NaH 2 PO 4 - дигидрофосфат натрия. Названия основных солей образуют добавлением слова гидроксо- или дигидроксо- : (AlOH)Cl 2 – гидроксохлорид алюминия, 2 SO 4 - дигидроксосульфат хрома(III).

Получение и свойства солей

а) химические свойства солей .

1) Взаимодействие солей с металлами – окислительно-восстановительный процесс. При этом металл, стоящий левее в электрохимическом ряду напряжений, вытесняет последующие из растворов их солей:

Zn+CuSO 4 =ZnSO 4 +Cu

Щелочные и щелочноземельные металлы не используют для восстановления других металлов из водных растворов их солей, поскольку они взаимодействуют с водой, вытесняя водород:

2Na+2H 2 O=H 2 +2NaOH.

2) Взаимодействие солей с кислотами и щелочами было рассмотрено выше.

3) Взаимодействие солей между собой в растворе протекают необратимо лишь в том случае, если один из продуктов – малорастворимое вещество:

BaCl 2 +Na 2 SO 4 =BaSO 4 +2NaCl.

4) Гидролиз солей - обменное разложение некоторых солей водой. Гидролиз солей будет подробно рассмотрен в теме «электролитическая диссоциация».

б) способы получения солей .

В лабораторной практике обычно используют следующие способы получения солей, основанные на химических свойствах различных классов соединений и простых веществ:

1) Взаимодействие металлов с неметаллами:

Cu+Cl 2 =CuCl 2 ,

2) Взаимодействие металлов с растворами солей:

Fe+CuCl 2 =FeCl 2 +Cu.

3) Взаимодействие металлов с кислотами:

Fe+2HCl=FeCl 2 +H 2 .

4) Взаимодействие кислот с основаниями и амфотерными гидроксидами:

3HCl+Al(OH) 3 =AlCl 3 +3H 2 O.

5) Взаимодействие кислот с основными и амфотерными оксидами:

2HNO 3 +CuO=Cu(NO 3) 2 +2H 2 O.

6) Взаимодействие кислот с солями:

HCl+AgNO 3 =AgCl+HNO 3 .

7) Взаимодействие щелочей с солями в растворе:

3KOH+FeCl 3 =Fe(OH) 3 +3KCl.

8) Взаимодействие двух солей в растворе:

NaCl+AgNO 3 =NaNO 3 +AgCl.

9) Взаимодействие щелочей с кислотными и амфотерными оксидами:

Ca(OH) 2 +CO 2 =CaCO 3 +H 2 O.

10) Взаимодействие оксидов различного характера друг с другом:

CaO+CO 2 =CaCO 3 .

Соли встречаются в природе в виде минералов и горных пород, в растворенном состоянии в воде океанов и морей.

Однокислотные (NaOH , КОН, NH 4 OH и др.);


Двухкислотные (Са(ОН) 2 , Cu(OH) 2 , Fe(OH) 2 ;


Трехкислотные (Ni(OH) 3 , Со(ОН) 3 , Мn(ОН) 3 .

Классификация по растворимости в воде и степени ионизации:

Растворимые в воде сильные основания,


например:


щелочи - гидроксиды щелочных и щелоч­ноземельных металлов LiOH - гидроксид лития, NaOH - гидроксид натрия (едкий натр), КОН - гадроксид калия (едкое кали), Ва(ОН) 2 - гидроксид бария;


Нерастворимые в воде сильные основания,


например:


Сu(ОН) 2 - гидроксид меди (II), Fe(OH) 2 - гидроксид железа (II), Ni(OH) 3 - гидроксид никеля (III).

Химические свойства

1. Действие на индикаторы


Лакмус - синий;

Метилоранж - жёлтый,

Фенолфталеин - малиновый.


2. Взаимодействие с кислотными оксидами


2KOH + CO 2 = K 2 CO 3 + H 2 O


KOH + CO 2 = KHCO 3


3. Взаимодействие с кислотами (реакция нейтрализации)


NaOH + HNO 3 = NaNO 3 + H 2 O; Cu(OH) 2 + 2HCl = CuCl 2 + 2H 2 O


4. Обменная реакция с солями


Ba(OH) 2 + K 2 SO 4 = 2KOH + BaSO 4


3KOH + Fe(NO 3) 3 = Fe(OH) 3 + 3KNO 3


5. Термический распад


Cu(OH) 2 t = CuO + H 2 O; 2 CuOH = Cu 2 O + Н 2 O


2Со(ОН) 3 = Со 2 O 3 + ЗН 2 O; 2АgОН = Аg 2 O + Н 2 O


6. Гидроксиды, в которых d-металлы имеют низкие с. о., способны окисляться кислоро­дом воздуха,


например:


4Fe(OH) 2 + O 2 + 2Н 2 O = 4Fe(OH) 3


2Мn(OН) 2 + O 2 + 2Н 2 O = 2Мn(ОН) 4


7. Растворы щелочей взаимодействуют c амфотерными гидроксидами:


2КОН + Zn(OH) 2 = К 2


2КОН + Al 2 O 3 + ЗН 2 O = 2К


8. Растворы щелочей взаимодействуют с ме­таллами, образующими амфотерные оксиды игидроксиды (Zn , AI и др.),


например:


Zn + 2 NaOH +2Н 2 O = Na 2 + Н 2


2AI +2КOН + 6Н 2 O= 2КAl(ОН) 4 ] + 3H 2


9. В растворах щелочей некоторые неметаллы диспропорционируют,


например:


Cl 2 + 2NaOH = NaCl + NaCIO + Н 2 O


3S+ 6NaOH = 2Na 2 S+ Na 2 SO 3 + 3H 2 O


4P+ 3KOH + 3H 2 O = PH 3 + 3KH 2 PO 2


10. Растворимые основания широко использу­ются в реакциях щелочного гидролиза раз­личных органических соединений (галогенопроизводных углеводородов, сложных эфиров, жиров и др.),


например:


C 2 H 5 CI + NaOH = С 2 Н 5 ОН + NaCl

Способы получения щелочей и нерастворимых оснований

1. Реакции активных металлов (щелочных и щелочноземельных металлов) с водой:


2Na + 2H 2 O = 2 NaOH + H 2


Ca + 2H 2 O = Ca(OH) 2 + H 2


2. Взаимодействие оксидов активных металлов с водой:


BaO + H 2 O = Ba(OH) 2


3. Электролиз водных растворов солей:


2NaCl + 2H 2 O = 2NaOH + H 2 + Cl 2


CaCI 2 + 2Н 2 O = Са(ОН) 2 +Н 2 + Cl 2


4. Осаждение из растворов соответствующих солей щелочами:


CuSO 4 + 2NaOH = Cu(OH) 2 + Na 2 SO 4


FeCI 3 + 3KOH = Fe(OH) 3 + 3KCI