Лекция линии на плоскости и их уравнения. Линии на плоскости и их уравнения Уравнение линии на плоскости окружность


Эта статья является продолжением раздела прямая на плоскости . Здесь мы перейдем к алгебраическому описанию прямой линии с помощью уравнения прямой.

Материал данной статьи является ответом на вопросы: «Какое уравнение называют уравнением прямой и какой вид имеет уравнение прямой на плоскости»?

Навигация по странице.

Уравнение прямой на плоскости - определение.

Пусть на плоскости зафиксирована Oxy и в ней задана прямая линия.

Прямая, как и любая другая геометрическая фигура, состоит из точек. В фиксированной прямоугольной системе координат каждая точка прямой имеет свои координаты – абсциссу и ординату. Так вот зависимость между абсциссой и ординатой каждой точки прямой в фиксированной системе координат, может быть задана уравнением, которое называют уравнением прямой на плоскости.

Другими словами, уравнение прямой на плоскости в прямоугольной системе координат Oxy есть некоторое уравнение с двумя переменными x и y , которое обращается в тождество при подстановке в него координат любой точки этой прямой.

Осталось разобраться с вопросом, какой вид имеет уравнение прямой на плоскости. Ответ на него содержится в следующем пункте статьи. Забегая вперед, отметим, что существуют различные формы записи уравнения прямой, что объясняется спецификой решаемых задач и способом задания прямой линии на плоскости . Итак, приступим к обзору основных видов уравнения прямой линии на плоскости.

Общее уравнение прямой.

Вид уравнения прямой в прямоугольной системе координат Oxy на плоскости задает следующая теорема.

Теорема.

Всякое уравнение первой степени с двумя переменными x и y вида , где А , В и С – некоторые действительные числа, причем А и В одновременно не равны нулю, задает прямую линию в прямоугольной системе координат Oxy на плоскости, и всякая прямая на плоскости задается уравнением вида .

Уравнение называется общим уравнением прямой на плоскости.

Поясним смысл теоремы.

Заданному уравнению вида соответствует прямая на плоскости в данной системе координат, а прямой линии на плоскости в данной системе координат соответствует уравнение прямой вида .

Посмотрите на чертеж.

С одной стороны можно сказать, что эта линия определяется общим уравнением прямой вида , так как координаты любой точки изображенной прямой удовлетворяют этому уравнению. С другой стороны, множество точек плоскости, определяемых уравнением , дают нам прямую линию, приведенную на чертеже.

Общее уравнение прямой называется полным , если все числа А , В и С отличны от нуля, в противном случае общее уравнение прямой называется неполным . Неполное уравнение прямой вида определяют прямую, проходящую через начало координат. При А=0 уравнение задает прямую, параллельную оси абсцисс Ox , а при В=0 – параллельную оси ординат Oy .

Таким образом, любую прямую на плоскости в заданной прямоугольной системе координат Oxy можно описать с помощью общего уравнения прямой при некотором наборе значений чисел А , В и С .

Нормальный вектор прямой , заданной общим уравнением прямой вида , имеет координаты .

Все уравнения прямых, которые приведены в следующих пунктах этой статьи, могут быть получены из общего уравнения прямой, а также могут быть обратно приведены к общему уравнению прямой.

Рекомендуем к дальнейшему изучению статью . Там доказана теорема, сформулированная в начале этого пункта статьи, приведены графические иллюстрации, подробно разобраны решения примеров на составление общего уравнения прямой, показан переход от общего уравнения прямой к уравнениям другого вида и обратно, а также рассмотрены другие характерные задачи.

Уравнение прямой в отрезках.

Уравнение прямой вида , где a и b – некоторые действительные числа отличные от нуля, называется уравнением прямой в отрезках . Это название не случайно, так как абсолютные величины чисел а и b равны длинам отрезков, которые прямая отсекает на координатных осях Ox и Oy соответственно (отрезки отсчитываются от начала координат). Таким образом, уравнение прямой в отрезках позволяет легко строить эту прямую на чертеже. Для этого следует отметить в прямоугольной системе координат на плоскости точки с координатами и , и с помощью линейки соединить их прямой линией.

Для примера построим прямую линию, заданную уравнением в отрезках вида . Отмечаем точки и соединяем их.

Детальную информацию об этом виде уравнения прямой на плоскости Вы можете получить в статье .

Уравнение прямой с угловым коэффициентом.

Уравнение прямой вида , где x и y - переменные, а k и b – некоторые действительные числа, называется уравнением прямой с угловым коэффициентом (k – угловой коэффициент). Уравнения прямой с угловым коэффициентом нам хорошо известны из курса алгебры средней школы. Такой вид уравнения прямой очень удобен для исследования, так как переменная y представляет собой явную функцию аргумента x.

Определение углового коэффициента прямой дается через определение угла наклона прямой к положительному направлению оси Ox .

Определение.

Углом наклона прямой к положительному направлению оси абсцисс в данной прямоугольной декартовой системе координат Oxy называют угол , отсчитываемый от положительного направления оси Ох до данной прямой против хода часовой стрелки.

Если прямая параллельна оси абсцисс или совпадает с ней, то угол ее наклона считают равным нулю.

Определение.

Угловой коэффициент прямой есть тангенс угла наклона этой прямой, то есть, .

Если прямая параллельна оси ординат, то угловой коэффициент обращается в бесконечность (в этом случае также говорят, что угловой коэффициент не существует). Другими словами, мы не можем написать уравнение прямой с угловым коэффициентом для прямой, параллельной оси Oy или совпадающей с ней.

Заметим, что прямая, определяемая уравнением , проходит через точку на оси ординат.

Таким образом, уравнение прямой с угловым коэффициентом определяет на плоскости прямую, проходящую через точку и образующую угол с положительным направлением оси абсцисс, причем .

В качестве примера изобразим прямую, определяемую уравнением вида . Эта прямая проходит через точку и имеет наклон радиан (60 градусов) к положительному направлению оси Ox . Ее угловой коэффициент равен .

Отметим, что очень удобно искать именно в виде уравнения прямой с угловым коэффициентом.

Каноническое уравнение прямой на плоскости.

Каноническое уравнение прямой на плоскости в прямоугольной декартовой системе координат Oxy имеет вид , где и – некоторые действительные числа, причем и одновременно не равны нулю.

Очевидно, что прямая линия, определяемая каноническим уравнением прямой, проходит через точку . В свою очередь числа и , стоящие в знаменателях дробей, представляют собой координаты направляющего вектора этой прямой. Таким образом, каноническое уравнение прямой в прямоугольной системе координат Oxy на плоскости соответствует прямой, проходящей через точку и имеющей направляющий вектор .

Для примера изобразим на плоскости прямую линию, соответствующую каноническому уравнению прямой вида . Очевидно, что точка принадлежит прямой, а вектор является направляющим вектором этой прямой.

Каноническое уравнение прямой вида используют даже тогда, когда одно из чисел или равно нулю. В этом случае запись считают условной (так как содержится ноль в знаменателе) и ее следует понимать как . Если , то каноническое уравнение принимает вид и определяет прямую, параллельную оси ординат (или совпадающую с ней). Если , то каноническое уравнение прямой принимает вид и определяет прямую, параллельную оси абсцисс (или совпадающую с ней).

Детальная информация об уравнении прямой в каноническом виде, а также подробные решения характерных примеров и задач собраны в статье .

Параметрические уравнения прямой на плоскости.

Параметрические уравнения прямой на плоскости имеют вид , где и – некоторые действительные числа, причем и одновременно не равны нулю, а - параметр, принимающий любые действительные значения.

Параметрические уравнения прямой устанавливают неявную зависимость между абсциссами и ординатами точек прямой линии с помощью параметра (отсюда и название этого вида уравнений прямой).

Пара чисел , которые вычисляются по параметрическим уравнениям прямой при некотором действительном значении параметра , представляет собой координаты некоторой точки прямой. К примеру, при имеем , то есть, точка с координатами лежит на прямой.

Следует отметить, что коэффициенты и при параметре в параметрических уравнениях прямой являются координатами направляющего вектора этой прямой.

Рассмотрим функцию, заданную формулой (уравнением)

Этой функции, а следовательно, и уравнению (11) соответствует на плоскости вполне определенная линия, которая является графиком данной функции (см. рис. 20). Из определения графика функции следует, что эта линия состоит из тех и только тех точек плоскости координаты которых удовлетворяют уравнению (11).

Пусть теперь

Линия, являющаяся графиком этой функции, состоит из тех и только тех точек плоскости координаты которых удовлетворяют уравнению (12). Это значит, что если точка лежит на указанной линии, то ее координаты удовлетворяют уравнению (12). Если же точка не лежит на этой линии, то ее координаты уравнению (12) не удовлетворяют.

Уравнение (12) разрешено относительно у. Рассмотрим уравнение, содержащее х и у и не разрешенное относительно у, например уравнение

Покажем, что и этому уравнению в плоскости соответствует линия, а именно - окружность с центром в начале координат и радиусом, равным 2. Перепишем уравнение в виде

Его левая часть представляет собой квадрат расстояния точки от начала координат (см. § 2, п. 2, формула 3). Из равенства (14) следует, что квадрат этого расстояния равен 4.

Это значит, что любая точка , координаты которой удовлетворяют уравнению (14), а значит и уравнению (13), находится от начала координат на расстоянии, равном 2.

Геометрическое место таких точек есть окружность с центром в начале координат и радиусом 2. Эта окружность и будет линией, соответствующей уравнению (13). Координаты любой ее точки, очевидно, удовлетворяют уравнению (13). Если же точка не лежит на найденной нами окружности, то квадрат ее расстояния от начала координат будет либо больше, либо меньше 4, а это значит, что координаты такой точки уравнению (13) не удовлетворяют.

Пусть теперь, в общем случае, дано уравнение

в левой части которого стоит выражение, содержащее х и у.

Определение. Линией, определяемой уравнением (15), называется геометрическое место точек плоскости координаты которых удовлетворяют этому уравнению.

Это значит, что если линия L определяется уравнением то координаты любой точки L удовлетворяют этому уравнению, а координаты всякой точки плоскости лежащей вне L, уравнению (15) не удовлетворяют.

Уравнение (15) называется уравнением линии

Замечание. Не следует думать, что любое уравнение определяет какую-нибудь линию. Например, уравнение не определяет никакой линии. В самом деле, при любых действительных значениях и у левая часть данного уравнения положительна, а правая равна нулю, и следовательно, этому уравнению не могут удовлетворять координаты никакой точки плоскости

Линия может определяться на плоскости не только уравнением, содержащим декартовы координаты, но и уравнением в полярных координатах. Линией, определяемой уравнением в полярных координатах, называется геометрическое место точек плоскости, полярные координаты которых удовлетворяют этому уравнению.

Пример 1. Построить спираль Архимеда при .

Решение. Составим таблицу для некоторых значений полярного угла и соответствующих им значений полярного радиуса .

Строим в полярной системе координат точку , которая, очевидно, совпадает с полюсом; затем, проведя ось под углом к полярной оси, строим на этой оси точку с положительной координатой после этого аналогично строим точки с положительными значениями полярного угла и полярного радиуса (оси для этих точек на рис. 30 не указаны).

Соединив между собой точки получим одну ветвь кривой, обозначенную на рис. 30 жирной линией. При изменении от 0 до эта ветвь кривой состоит из бесконечного числа витков.

Линию на плоскости будем рассматривать как геометрическое место точек M(x, y), удовлетворяющих некоторому условию.

Если в декартовой системе координат записать свойство, которым обладают все точки линии, связав координаты и некоторые константы, можно получить уравнение вида: F(x, y) = 0 или .

Пример. Написать уравнение окружности с центром в точке C(x 0 , y 0) и радиуса R.

Окружность – геометрическое место точек, равноудаленных от точки С. Возьмем точку М с текущими координатами. Тогда |CM| = R или или .

Если центр окружности находится в начале координат, то x 2 + y 2 = R 2 .

Не всякое уравнение вида F(x, y) = 0 определяет линию в указанном смысле: x 2 + y 2 = 0 – точка.

Прямая на плоскости.

Прямые на данной плоскости являются частным случаем прямых в пространстве. Поэтому их уравнения можно получить из соответствующих уравнений прямых в пространстве.

Общее уравнение прямой на плоскости. Уравнение прямой с угловым коэффициентом.

Любую прямую в плоскости XOY можно задать как линию пересечения плоскости Ax + By + Cz + D = 0 с плоскостью XOY: z = 0.

- прямая линия в плоскости XOY: Ax + By + D = 0.

Полученное уравнение называется общим уравнением прямой. В дальнейшем его будем записывать в виде:

Ax + By + C = 0 (1)

1) Пусть , тогда или y = kx + b (2) – уравнение прямой с угловым коэффициентом. выясним геометрический смысл k и b.

Положим x = 0. Тогда y = b – начальная ордината прямой.

Положим y = 0. Тогда ; - угловой коэффициент прямой.

Частные случаи: а) b = 0, y=kx – прямая проходит через начало координат; б) k = 0, y = b – прямая параллельна оси ОХ; b) если B = 0, то Ax + C = 0, ,

Это - геометрическое место точек с постоянными абсциссами, равными a, т.е. прямая перпендикулярна оси ОХ.

Уравнение прямой в отрезках.

Пусть дано общее уравнение прямой: Ax + By + C = 0, причем . Разделим обе его части на –C:

или (3),

где ; . Это уравнение прямой в отрезках. Числа a и b – величины отрезков, отсекаемых на осях координат.

Уравнение прямой, проходящей через данную точку с данным угловым коэффициентом.



Пусть дана точка M 0 (x 0 , y 0), лежащая на прямой L и угловой коэффициент k. Запишем уравнение:

Здесь b неизвестно. Найдем его, учитывая, что M 0 L:

y 0 = kx 0 + b (**).

Вычтем почленно из (1) (2):

y – y 0 = k(x – x 0) (4).

Уравнение прямой, проходящей через данную точку в данном направлении.

Уравнение прямой, проходящие через две данные точки.

Пусть даны две точки M 1 (x 1 , y 1) и M 2 (x 2 , y 2) L. Запишем уравнение (4) в виде: y – y 1 = k(x – x 1). Т.к. M 2 L, то y 2 – y 1 = k(x 2 – x 1). Поделим почленно:

(5),

Это уравнение имеет смысл, если , . Если x 1 = x 2 , то M 1 (x 1 , y 1) и M 2 (x 1 , y 2). Если у 2 = у 1 , то М 1 (х 1 , у 1); М 2 (х 2 , у 1).

Т.о., если один из знаменателей в (5) обращается в нуль, надо приравнять нулю соответствующий числитель.

Пример. М 1 (3, 1) и М 2 (-1, 4). Написать уравнение прямой, проходящей через эти точки. Найти k.

1 0 . Полярная система координат . Будем говорить, что на плоскости введена полярная система координат, если на ней выбрана точкаO – полюс, луч, выходящий из полюсаO – полярная ось и масштабный отрезок.

Пусть M – произвольная точка плоскости, не совпадающая с полюсомO (рис.3.4 хх). Первой полярной координатой точкиM (полярным радиусом) называется расстояние от точкиM до полюсаO . второй полярной координатой точкиM (или амплитудой) называется уголот полярной оси (луча
) до лучаOM . Для точкиO считают
,– произвольное число.

Из определения полярных координат и их геометрического смысла следует, что

Значения второй координаты, лежащие в пределах
называют главные значением угла.

Замечание . В полярной системе координат нет взаимно однозначного соответствия между точками плоскости и упорядоченной парой чисел (,):(,) соответствует единственная точка плоскости, но
соответствует бесчисленное множество пар (,+
).

Задать точку M в полярной системе координат означает задать два числаи:M (,).

Установим связь между декартовыми и полярными координатами (одной и той же) точки M .

Для этого введем оси
и
как показано на рис.3.5 хх. Масштабный отрезок полярной системы
примем и за масштабный отрезок декартовой системы
.

Пусть
– декартовы,
– полярные координаты некоторой точкиM . Тогда

и обратно,

По формулам (3.2) переходят от полярных координат к декартовым, по (3.2’) – от декартовых координат к полярным.

2 0 . Понятие линии и ее уравнения. Понятие линии является одним из самых трудных понятий математики. Общее определение линии дается в топологии (одном из разделов математики). Получено оно было в двадцатые годы прошлого столетия советским математиком П.С.Урысоном.

Здесь мы не будем заниматься определением линии ; дадим лишь определение того, что называетсяуравнением линии .

Определение 1 . Уравнением линии (обозначают (L ), либоL – без скобок) в декартовой системе координат называется уравнение

, (3.3)

которому удовлетворяют координаты
всех точек
и только координаты таких точек (то есть координаты точек, не лежащих на линииL , не удовлетворяют (3.3) – не обращают его в тождество).

В частности, уравнение линии L может иметь вид:

. (3.3’)

Определение 2 . Уравнением линии в полярной системе координат называется уравнение

, (3.4)

которому удовлетворяют полярные координаты
всех точек
и только координаты таких точек.

В частности, уравнение линии L в полярных координатах может иметь вид:

. (3.4’)

Определение 3 . Параметрическими уравнениями линииL в декартовой системе координат называются уравнения вида

(3.5)

где функции
и
имеют одну и ту же область определения – промежутокT .
соответствует точка
рассматриваемой линииL и
соответствует некоторому значению
(то есть

такое, что
и
будут координатами точкиM ).

Замечание 1 . Аналогично определяются параметрические уравнения линии в полярных координатах.

Замечание 2 . В курсе аналитической геометрии (на плоскости) рассматриваются две основные задачи:

1) известны геометрические свойства некоторой линии на плоскости; составить ее уравнение;

2) известно уравнение линии L ; построить эту линию, установить ее геометрические свойства.

Рассмотрим примеры.

Пример 1 . Найти уравнение окружностиL радиусаR , центр которой находится в точке
(рис.3.6 хх).

Замечание. Прежде, чем переходить к решению задачи, сделаем замечание (которому надо следовать и в дальнейшем): решение задачи на определение геометрического места точек начинается с введения произвольной («текущей») точки с координатами
этого геометрического места.

Решение . Пусть точка
– произвольная точка окружностиL . По определению, окружность есть геометрическое место точек, равноудаленных от фиксированной точки – ее центра:CM = R . По формуле (2.31) (в ней надо положить
) находим:

(3.6)

.– уравнение искомой окружности.

Если центр С лежит в начале координат, то
и уравнение

(3.6’)

есть уравнение такой окружности.

Пример 2 . Пусть криваяL задана уравнением:
. Построить эту кривую; установить, проходит ли она через точку
? через точку
?

Решение . Преобразуем левую часть данного уравнения, выделив в ней полные квадраты:или
– это уравнение определяет окружность с центром в точке
радиуса
.

Координаты точки
удовлетворяют уравнению окружности:– точкаO лежит на окружности; координаты же точки
не удовлетворяют уравнению окружности.

Пример 3 . Найти геометрическое место точек, отстоящих от точки
вдвое дальше, чем от точки
.

Решение . Пусть
– текущая точка (искомого) геометрического места. Тогдаи из условия задачи пишем уравнение:.

Возведем это равенство в квадрат и преобразуем:

– искомое место есть окружность с центром в точке
и радиусомR =10.

Приведем примеры на определение уравнений линий в полярной системе координат.

Пример 4 . Составить уравнение окружности радиусаR с центром в полюсеO .

Решение . Пусть
есть произвольная точка окружностиL (рис.3.7 хх). Тогда
или

(3.7)

– этому уравнению удовлетворяют точки, лежащие на окружности L , и не удовлетворяют точки, не лежащие на ней.

Пример 5 . Составить уравнение прямой, проходящей через точку
параллельно полярной оси (рис.3.8 хх).

Решение . Из прямоугольного треугольникаOAM следует, что
– имеем уравнение прямой в полярной системе координат.

Замечание . Уравнение прямой в декартовой системе координат:
; подставляя
из (3.2), получим
или
.

Пример 6 . Построить кривую.

Решение . Заметим, что кривая симметрична относительно полярной оси:
=
=
=
. Поэтому если точка
, то и точка
.

Даем полярному углу различные значения от=0 до=и определяем соответствующие этим углам значения. Запишем это в виде таблицы 1.

Таблица 1.

Из точки O проводим лучи
,
,…,
,
и откладываем на них отрезки
,
,…,
,
. Через полученные точки
,
,…,
,
проводим плавную линию – получим верхнюю половину кривой. Нижнюю достраиваем симметричным отражением верхней относительно полярной оси.

Полученная замкнутая кривая (рис.3.9 хх) называется кардиоидой (сердцеобразной).

Пример 7 . Записать уравнение линии
(равнобочной гиперболы) в полярной системе координат.

Решение . Заменяяx иy по формулам (3.2), получим, и
есть уравнение заданной линии в полярной системе координат.

Пример 8 . Записать уравнение кривой
в прямоугольной декартовой системе координат.

Решение . Запишем уравнение кривой в виде
. По формулам (3.2’) преобразуем его к виду
; возводя это равенство в квадрат, после несложных преобразований придем к уравнению
– эта кривая называется параболой (см. ниже).

Пример 9 . Приведем пример на параметрическое задание кривой. Пусть дана окружность радиусаR с центром в начале координат и пусть
– декартовы координаты текущей точкиM :M
. Пусть, далее,
– полярные координаты той же точки. По формулам (3.2) тогда

где параметр t принимает все значения от 0 до
, есть параметрическое уравнение искомой окружности.

Если центр С окружности взят в точке с координатами
, то, как нетрудно показать, формулы

дают параметрические уравнения соответствующей окружности.

10.1. Основные понятия

Линия на плоскости рассматривается (задается) как множество точек, обладающих некоторым только им присущим геометрическим свойством. Например, окружность радиуса R есть множество всех точек плоскости, удаленных на расстояние - R от некоторой фиксированной точки О (центра окружности).

Введение на плоскости системы координат позволяет определять по­ложение точки плоскости заданием двух чисел - ее координат, а положе­ние линии на плоскости определять с помощью уравнения (т. е. равенства, связывающего координаты точек линии).

Уравнением линии (или кривой) на плоскости Оху называется такое уравнение F(x;y) = 0 с двумя переменными, которому удовлетворяют координаты x и у каждой точки линии и не удовлетворяют координаты любой точки, не лежащей на этой линии.

Переменные x и у в уравнении линии называются текущими коорди­натами точек линии.

Уравнение линии позволяет изучение геометрических свойств линии заменить исследованием его уравнения.

Так, для того чтобы установить лежит ли точка А(x 0 ; у 0) на данной линии, достаточно проверить (не прибегая к геометрическим построениям), удовлетворяют ли координаты точки А уравнению этой линии в выбран­ной системе координат.

Задача о нахождении точек пересечения двух линий, заданных урав­нениями F 1 (x 1 ;y 1) = 0 и F 2 (x 2 ;y} = 0, сводится к отысканию точек, координаты которых удовлетворяют уравнениям обеих линий, т. е. сводится к решению системы двух уравнений с двумя неизвестными:

Если эта система не имеет действительных решений, то линии не пересекаются.

Аналогичным образом вводится понятие уравнения линии в полярной системе координат.

Уравнение F(r; φ)=О называется уравнением данной линии в поляр­ной системе координат, если координаты любой точки, лежащей на этой линии, и только они, удовлетворяют этому уравнению.

Линию на плоскости можно задать при помощи двух уравнений:

где x и у - координаты произвольной точки М(х; у), лежащей на данной линии, а t - переменная, называемая параметром; параметр t определяет положение точки (х; у) на плоскости.

Например, если x = t + 1, у = t 2 , то значению параметра t = 1 соот­ветствует на плоскости точка (3; 4), т. к. x = 1 + 1 = 3, у = 22 - 4.

Если параметр t изменяется, то точка на плоскости перемещается, описывая данную линию. Такой способ задания линии называется параметрическим , а уравнения (10.1) - параметрическими уравнениями линии.

Чтобы перейти от параметрических уравнений линии к уравнению вида F(x;y) = 0, надо каким-либо способом из двух уравнений исключить параметр t.

Например, от уравнений путем подстановки t = х

во второе уравнение, легко получить уравнение у = х 2 ; или у-х 2 = 0, т. е. вида F(x; у) = 0. Однако, заметим, такой переход не всегда возможен.

Линию на плоскости можно задать векторным уравнением r =r (t) , где t - скалярный переменный параметр. Каждому значению t 0 соответствует определенный вектор r =r (t) плоскости. При изменении параметра t конец вектора r =r (t) опишет некоторую линию (см. рис. 31).

Векторному уравнению линии r =r (t) в системе координат Оху соответствуют два скалярных уравнения (10.1), т. е. уравнения проекций на оси координат векторного уравнения линии есть ее параметрические уравнения. I Векторное уравнение и параметрические уравнения I линии имеют механический смысл. Если точка перемеща- I ется на плоскости, то указанные уравнения называются уравнениями дви­жения, а линия - траекторией точки, параметр t при этом есть время. Итак, всякой линии на плоскости соответствует некоторое уравнение вида F(x; у) = 0.

Всякому уравнению вида F(x; у) = 0 соответствует, вообще говоря, не­которая линия, свойства которой определяются данным уравнением (выражение «вообще говоря» означает, что сказанное допускает исключения. Так, уравнению (х-2) 2 +(у-3 ) 2 =0 соответствует не линия, а точка (2; 3); уравнению х 2 + у 2 + 5 = 0 на плоскости не соответствует никакой геометрический образ).

В аналитической геометрии на плоскости возникают две основные задачи. Первая: зная геометрические свойства кривой, найти ее уравнение) вторая: зная уравнение кривой, изучить ее форму и свойства.

На рисунках 32-40 приведены примеры некоторых кривых и указаны их уравнения.

10.2. Уравнения прямой на плоскости

Простейшей из линий является прямая. Разным способам задания прямой соответствуют в прямоугольной системе координат разные виды её уравнений.

Уравнение прямой с угловым коэффициентом

Пусть на плоскости Оху задана произвольная прямая, не параллельная оси Оу. Ее положение вполне определяется ординатой b точки N(0; b) пересечения с осью Оу и углом a между осью Ох и прямой (см. рис. 41).

Под углом а (0

Из определения тангенса угла следует равенство

Введем обозначение tg a=k , получаем уравнение

(10.2)

которому удовлетворяют координаты любой точки М(х;у) прямой. Мож­но убедиться, что координаты любой точки Р(х;у), лежащей вне данной прямой, уравнению (10.2) не удовлетворяют.

Число k = tga называется угловым коэффициентом прямой, а уравнение (10.2) - уравнением прямой с угловым коэффициентом.

Если прямая проходит через начало координат, то b = 0 и, следова­тельно, уравнение этой прямой будет иметь вид y=kx .

Если прямая параллельна оси Ох, то a = 0, следовательно, k = tga = 0 и уравнение (10.2) примет вид у = b.

Если прямая параллельна оси Оу, то , уравнение (10.2) теряет смысл, т. к. для нее угловой коэффициент не существует.

В этом случае уравнение прямой будет иметь вид

где a - абсцисса точки пересечения прямой с осью Ох. Отметим, что уравнения (10.2) и (10.3) есть уравнения первой степени.

Общее уравнение прямой.

Рассмотрим уравнение первой степени относительно x и y в общем виде

(10.4)

где А, В, С - произвольные числа, причем А и В не равны нулю одно­временно.

Покажем, что уравнение (10.4) есть уравнение прямой линии. Возмож­ны два случая.

Если В = 0, то уравнение (10.4) имеет вид Ах + С = О, причем А ¹ 0 т. е. . Это есть уравнение прямой, параллельной оси Оу и проходящей через точку ·

Если B ¹ 0, то из уравнения (10.4) получаем . Это есть уравнение прямой с угловым коэффициентом |.

Итак, уравнение (10.4) есть уравнение прямой линии, оно называется общим уравнением прямой .

Некоторые частные случаи общего уравнения прямой:

1) если А = 0, то уравнение приводится к виду. Это есть уравнение прямой, параллельной оси Ох;

2) если В = 0, то прямая параллельна оси Оу;

3) если С = 0, то получаем . Уравнению удовлетворяют координаты точки O(0;0), прямая проходит через начало координат.

Уравнение прямой, проходящей через данную точку в данном направлении

Пусть прямая проходит через точку и ее направление определяется угловым коэффициентом k. Уравнение этой прямой можно записать в виде , где b - пока неизвестная величина. Так как прямая проходит через точку , то координаты точки удовлетворяют уравнению прямой:. Отсюда . Подставляя значение b в уравнение, получим искомое уравнение прямой: , т. е.

(10.5)

Уравнение (10.5) с различными значениями k называют также уравнениями пучка прямых с центром в точке Из этого пучка нельзя определить лишь прямую, параллельную оси Оу.

Уравнение прямой, проходящей через две точки

Пусть прямая проходит через точки и . Уравнения прямой, проходящей через точку M 1 , имеет вид

(10.6)

где k - пока неизвестный коэффициент.

Так как прямая проходит через точку , то координаты этой точки должны удовлетворять уравнению (10.6): . Οтсюда находим . Подставляя найденное значение k в уравнение (10.6), получим уравнение прямой, проходящей через точки M 1 и M 2 .

(10.7)

Предполагается, что в этом уравнении ·

Если x 2 = x 1 прямая, проходящая через точки и параллельна оси ординат. Ее уравнение имеет вид .

Если y 2 = y 1 то уравнение прямой может быть записано в виде , прямая M 1 M 2 параллельна оси абсцисс.

Уравнение прямой в отрезках

Пусть прямая пересекает ось Ох в точке , а ось Оу – в точке (см. рис. 42). В этом случае уравнение (10.7) примет вид

Это уравнение называется уравнением прямой в отрезках , так как числа α и b указывают, какие отрезки отсекает прямая на осях координат.

Уравнение прямой, проходящей через данную точку перпендикулярно данному вектору

Найдем уравнение прямой, проходящей через заданную точку перпендикулярно данному ненулевому вектору .

Возьмем на прямой произвольную точку М(х;у) и рассмотрим вектор (см. рис. 43). Поскольку векторы и перпендикулярны, то их скалярное произведение равно нулю: , то есть

Уравнение (10.8) называется уравнением прямой, проходящей через заданную точку перпендикулярно заданному вектору.

Вектор , перпендикулярный прямой, на­зывается нормальным вектором этой прямой. Уравнение (10.8) можно переписать в виде

(10.9)

где А и B- координаты нормального вектора, - сво­бодный член. Уравнение (10.9) есть общее уравнение прямой (см. (10.4)).

Полярное уравнение прямой

Найдем уравнение прямой в полярных координатах. Ее положение можно опреде­лить, указав расстояние ρ от полюса О до данной прямой и угол α между полярной осью ОΡ и осью l , проходящей через полюс О перпендикулярно данной прямой (см. рис. 44).

Для любой точки на данной прямой имеем:

С другой стороны,

Следовательно,

(10.10)

Полученное уравнение (10.10) и есть уравнение прямой в полярных координатах.

Нормальное уравнение прямой

Пусть прямая определяется заданием p и α (см. рис. 45). Рассмотрим прямоугольную систему координат . Введем полярную систему, взяв за полюс и за полярную ось. Уравнение прямой можно записать в виде

Но, в силу формул, связывающих прямоугольные и полярные координаты, имеем: , . Следовательно, уравнение (10.10) прямой в прямоугольной системе координат примет вид

(10.11)

Уравнение (10.11) называется нормальным уравнением прямой .

Покажем, как привести уравнение (10.4) прямой к виду (10.11).

Умножим все члены уравнения (10.4) на некоторый множитель . Получим . Это уравнение долж­но обратиться в уравнение (10.11). Следо­вательно, должны выполняться равенства: , , . Из первых двух равенств находим,т. е. . Множитель λ называется нормирующим множителем . Согласно третьему равенству знак нормирующего множителя противоположен знаку свобод­ного члена С общего уравнения прямой.