Приём вкр для публикации в эбс спбгэту "лэти". Как происходит процесс преобразования солнечной энергии в электрическую Существующие конструкции фотоэлектрических преобразователей солнечной энергии

Фотоэлектрический метод преобразования солнечной энергии в электрическую основан на явлении фотоэлектрического эффекта – освобождения электронов проводимости в приемнике излучения под действием квантов солнечного излучения.

Этот эффект используется в полупроводниковых материалах, в которых энергия квантов излучения hn создает, например, на p n -переходе фототок

I ф =eN e ,

где N e – число электронов, создающих на переходе разность потенциалов, вследствие чего на переходе в обратном направлении потечет ток утечки I , равный фототоку, который является постоянным.

Потери энергии при фотоэлектрическом преобразовании обусловлены неполным использованием фотонов, а также рассеянием, сопротивлением и рекомбинацией уже возникших электронов проводимости .

Наиболее распространенным из выпускаемых промышленностью солнечных элементов (фотоэлементов) является пластинчатые кремниевые элементы. Существуют также и другие типы и конструкции, которые разрабатываются для повышения эффективности и снижения стоимости солнечных элементов.

Толщина солнечного элемента зависит от его способности поглощать солнечное излучение. Такие полупроводниковые материалы, как кремний, арсенид галлия и др. используются потому, что они начинают поглощать солнечное излучение с достаточно большой длиной волны, и могут преобразовывать в электричество его значительную долю. Поглощение солнечного излучения различными полупроводниковыми материалами достигает наибольшей величины при толщине пластин от 100 до 1 мкм и менее.

Уменьшение толщины солнечных элемента позволяет значительно снизить расход материалов и стоимость их изготовления.

Различия в поглощательный способности полупроводниковых материалов объясняется различиями в их атомном строении.

Эффективность преобразования солнечной энергии в электрическую не высока. Для кремневых элементов не более 12…14 %.

Чтобы повысить КПД солнечных элементов применяются просветляющие покрытия лицевой стороны солнечного элемента. В результате увеличивается доля проходящего солнечного излучения. У элементов без покрытия потери на отражение достигают 30 %.

В последнее время для изготовления солнечных элементов стали использовать ряд новых материалов. Одним из них является аморфный кремний, который в отличии от кристаллического не имеет регулярной структуры. Для аморфной структуры вероятность поглощения фотона и перехода в зону проводимости больше. Следовательно, он имеет большую поглощательную способность. Также находит применение арсенид галлия (GaAs). Теоретическая эффективность элементов на основе GaAs может достигнуть 25 %, реальные элементы имеют КПД около16 %.

Развивается технология тонкопленочных солнечных элементов. Несмотря на то, что КПД этих элементов в лабораторных условиях не превышает 16 %, они имеют более низкую стоимость. Это особенно ценно для снижения себестоимости и расхода материала в массовом производстве. В США и Японии изготавливают тонкопленочные элементы на аморфном кремнии площадью 0,1 …0,4 м 2 с КПД 8…9 %. Наиболее распространенным тонкопленочным фотоэлементом является элементы на основе сульфида кадмия (CdS) с КПД 10 %.

Другим достижением в технологии тонкопленочных солнечных элементов стало получение многослойных элементов. Они позволяют охватить большую часть спектра солнечного излучения.

Активный материал солнечного элемента стоит довольно дорого. Для более эффективного использования солнечное излучение собирают на поверхности солнечного элемента с помощью концентрирующих систем (рис. 2.7).

При увеличении радиационного потока характеристики элемента не ухудшаются, если его температура поддерживается на уровне температуры окружающего воздуха с помощью активного или пассивного охлаждения.

Существует большое количество концентрирующих систем, основанных на линзах (обычно плоских линзах Френеля), зеркалах, призмах полного внутреннего отражения и т.д. Если происходит сильно неравномерная облученность фотоэлементов или модулей, это может привести к разрушению солнечного элемента.

Использование концентрирующих систем позволяет снизить стоимость солнечных электростанций, так как концентрирующие элементы дешевле солнечных элементов .

По мере снижения цены на солнечные элементы, появилась возможность сооружения крупных фотоэлектрических установок. К 1984 г. было построено 14 относительно крупных солнечных электростанций мощностью от 200 кВт до 7 МВт в США, Италии, Японии, Саудовской Аравии и Германии.

Солнечная фотоэлектрическая установка имеет ряд достоинств. Она использует чистый и неиссякаемый источник энергии, не имеет движущихся частей и поэтому не требует постоянного контроля со стороны обслуживающего персонала. Солнечные элементы можно производить массовыми сериями, что приведет к снижению их стоимости.

Солнечные батареи собираются из солнечных модулей. При этом существует большой выбор типов и размеров этих устройств с одинаковой эффективностью преобразования энергии и одинаковой технологией производства.

Так как поступление солнечной энергии периодично, фотоэлектрические системы наиболее рационально включать в гибридные электростанции, использующие и солнечную энергию, и природный газ. На этих станциях может найти применение новое поколение газовых турбин. Гибридные маломощные электростанции, состоящие из фотоэлектрических панелей и дизельных генераторов, уже является надежными поставщиками энергии.

Конец работы -

Эта тема принадлежит разделу:

Кафедра промышленная теплоэнергетика.. конспект лекций по курсу нивиэ грибанов а и.. текст напечатали..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Энергоресурсы планеты
Энергоресурсы – материальные объекты, в которых сосредоточена энергия. Энергию условно можно разделить на виды: химическую, механическую, тепловую, электрическую и т.д. К основным энергоресурсам от

Возможности использования энергоресурсов
Термоядерная энергия Термоядерная энергия – это энергия синтеза гелия из дейтерия. Дейтерий – атом водорода, ядро которого состоит из одного протона и одного нейтро

Энергоресурсы России
Россия имеет огромные запасы энергоресурсов и, особенно, угля. Теоретический потенциал – это запасы топлива, которые конкретно не подверждены. Технический потенциа

Получение энергии на ТЭС
Как и в большинстве стран мира большая часть электроэнергии в России вырабатывается на ТЭС, сжигающих органическое топливо. В качестве топлива на ТЭС используют твердое, жидкое и газообразное топли

Переменный график электропотребления
В течении суток потребление электроэнергии не одинаково. В часы пик оно резко возрастает, а ночью значительно уменьшается. Следовательно, энергосистема должна иметь базовые мощности, работающие в п

Проблемы передачи электроэнергии
Передача электрической энергии на большие расстояния связана с потерями в ЛЭП. Теряется электрическая энергия равная произведению силы тока на эл. сопротивление провода. Передаваемая по проводам мо

Газотурбинные и парогазовые установки (ГТУ и ПГУ)
В настоящее время газотурбинные и парогазовые установки являютсяся самыми перспективными из всех установок для пр-ва тепловой и электрической энергии. Применение этих установок во многих странах ми

Магнитно-гидродинамические установки (МГДУ)
Перспективным также является использование электростанций на базе магнитогидродинамического генератора. Цикл МГДУ такой же как ГТУ, т.е адиабатное сжатие и расширение рабочего тела, изобарный подво

Топливные элементы
В настоящее время для выработки электрической энергии для выработки электроэнергии используют топливные элементы. Эти элементы преобразуют энергию химических реакций в электрическую энергию. Химиче

Тепловые насосы
ТН называют устройства, работающие по обратному термодинамическому циклу и предназначены для передачи тепла от низкопотенциального источника энергии к высокопотенциальному. Второй закон

Место малой энергетики в энергетике России
К нетрадиционным источникам энергии можно отнести малые гидроэлектростанции, дизельные электростанции, газо-поршневые электростанции, малые АЭС. Гарантом надежного электроснабжения, теплос

Газотурбинные и парогазовые малые электростанции
Газотурбинные электростанции малой мощности – компактные установки, изготовленные по блочно-контейнерному принципу. Составные части ГТЭС дают возможность вырабатывать не только электроэнергию, но и

Мини ТЭЦ
В настоящее время повысился интерес к комбинированной выработке тепла и электроэнергии с помощью небольших установок с помощью небольших установок с мощностью от нескольких десятков кВт до нескольк

Дизельные электростанции
В отдельных труднодоступных районах России куда невыгодно проводить ЛЭП для энергоснабжения населения этих районов используют бензиновые и дизельные электростанции. В районах крайнего севера число

Газопоршневые электростанции
Т.к. цены на дизельное топливо постоянно растут, то использование дизельных электростанций на дизельном топливе становятся дорогостоящим, поэтому в настоящее время в мире большой интерес проявляют

Малые гибридные электростанции
Для повышения надежности и эффективности систем электроснабжения требуется создание многофункциональной энергетических комплексов (МЭК). Также комплексы могут быть созданы на базе малых гибридных э

Малые АЭС
В последнее время значительный интерес проявляют к АЭС малой мощности. Это станции блочного испонения, они позволяют унифицировать оборудование и работу автономно. Такие станции могут быть надежные

Малая гидроэнергетика
Лидером в развитии малой гидроэнергетики является Китай. Мощность малых ГЭС (МГЭС) в Китае превышает 20 тыс. МВт. В индии установленная мощность МГЭС превышает 200 МВт. Широкое распространение МГЭС


Основные невозобновляемые энергоресурсы рано или поздно будут исчерпаны. Сейчас около 80% энергопотребления на планете обеспечивается за счет органического топлива. При таком использовании органиче

Гидроэнергетика
ГЭС в качестве источника энергии использует энергию водного потока. ГЭС строят на реках, сооружая плотины и водохранилища. Для эффективного производства энергии на ГЭС необходимы 2 основных фактора

Солнечная энергия
Солнечная энергия является результатом реакции синтеза ядер легких элементов дейтерия, трития и гелия, которые сопровождаются огромным количеством энергии. Источником всей энергии, за исключением т

Преобразование солнечной энергии в тепловую энергию
Солнечную энергию можно превратить в тепловую с помощью коллектора. Все солнечные коллекторы имеют поверхностный или объемный поглотитель тепла. Тепло может отводится из коллектора или аккумулирова

Термодинамическое преобразование солнечной энергии в электрическую энергию
Методы термодинамического преобразования солнечной энергии в электрическую основаны на циклах тепловых двигателей. Солнечная энергия преобразовывается в электрическую на солнечных электростанциях (

Перспективы развития солнечной энергетики в России
В 1985 г. в п. Щелкино Крымской области была введена в эксплуатацию первая в СССР солнечная электростанция башенного типа СЭС-5 электрической мощностью 5 МВт. 1600 гелиостатов (плоских зер

Особенности использования энергии ветра
Основной причиной возникновения ветра является неравномерное нагревание солнцем земной поверхности. Энергия ветра очень велика. По оценкам Всемирной метеорологической организации запасы энергии вет

Производство электроэнергии с помощью ВЭУ
Использование ветроустановок для производства электроэнергии является наиболее эффективным способом преобразования энергии ветра. При проектировании ВЭУ необходимо учитывать их следующие особенност

Ветроэнергетика России
Энергетический ветропотенциал России оценивается в 40 млрд. кВт. ч электроэнергии в год, то есть около 20000 МВт . ВЭС мощностью 1 МВт при среднегодовой скорости ветра 6 м/с экономит 1

Происхождение геотермальной энергии
В ядре Земли температура достигает 4000 °C. Выход тепла через твердые породы суши и океанского дна происходит в основном за счет теплопроводности и реже – в виде конвективных потоков расплавленной

Техника извлечения геотермального тепла
Источники геотермальной энергии можно разделить на пять типов. 1. Источники геотермального сухого пара. Они довольно редки, но наиболее удобны для строительства ГеоТЭС. 2. Источни

Электроэнергии
Превращение геотермальной энергии в электрическую осуществляется на основе использования машинного способа с помощью термодинамического цикла на ГеоТЭС. Для строительства ГеоТЭС наиболее б


Более значительны масштабы использования геотермальной теплоты для отопления и горячего водоснабжения. В зависимости от качества и температуры термальной воды существуют различные схемы геотермальн

Влияние геотермальной энергетики на окружающую среду
Основное воздействие на окружающую среду ГеоТЭС связано с разработкой месторождения, строительством зданий и паропроводов. Для обеспечения ГеоТЭС необходимым количеством пара или горячей воды требу

Геотермальная энергетика России
В России разведано 47 геотермальных месторождений с запасами термальных вод, которые позволяют получить более 240×103 м3/сут. термальных вод, и парогидротерм производите

Причины возникновения приливов
Приливы – это результат гравитационного взаимодействия Земли с Луной и Солнцем. Приливообразующая сила Луны в данной точке земной поверхности определяется как разность местного значения силы притяж

Приливные электростанции (ПЭС)
Поднятую во время прилива на максимальную высоту воду можно отделить от моря плотиной. В результате образуется приливный бассейн. Максимальная мощность, которую можно получить, пропуская в

Влияние пэс на окружающую среду
Возможное воздействие приливных электростанций на окружающую среду может быть связано с увеличением амплитуды приливов на океанской стороне плотины. Это может приводить к затоплению суши и сооружен

Приливная энергетика России
В России использование приливной энергии в прибрежных зонах морей Северного Ледовитого и Тихого океанов связано с большими капиталовложениями. Первая в нашей стране Кислогубская ПЭС мощнос

Энергия волн
От морских волн можно получить огромное количество энергии. Мощность, переносимая волнами по глубокой воде, пропорциональна квадрату их амплитуды и периоду. Наибольший интерес представляют длиннопе

Энергия океанических течений
Всю акваторию Мирового океана пересекают поверхностные и глубинные течения. Запас кинетической энергии этих течений составляет порядка 7,2∙1012 кВт∙ч/год. Эту энергию с помощ

Ресурсы тепловой энергии океана
Мировой океан является естественным аккумулятором солнечной энергии. В тропических морях верхний слой воды толщиной несколько метров имеет температуру 25…30 °С. На глубине 1000 м температура воды н

Океанические тепловые электростанции
Для преобразования энергии перепада температур в океане предлагается несколько типов устройств. Наибольший интерес представляет преобразование тепловой энергии в электрическую с помощью термодинами

Ресурсы биомассы
Под термином «биомасса» понимается органическое вещество растительного или животного происхождения, которое может быть использовано для получения энергии или технически удобных видов топлива путем

Термохимическая конверсия биомассы (сжигание, пиролиз, газификация)
Одним из основных направлений утилизации древесных отходов является их использование для получения тепловой и электрической энергии. Основными технологиями получения энергии из древесных отходов яв

Биотехнологическая конверсия биомассы
При биотехнологической конверсии используются различные органические отходы с влажностью не менее 75 %. Биологическая конверсия биомассы развивается по двум основным направлениям: 1) ферме

Экологические проблемы биоэнергетики
Биоэнергетические установки способствуют снижению загрязнения окружающей среды всевозможными отходами. Анаэробная ферментация является не только эффективным средством использования отходов животнов

Характеристика твердых бытовых отходов (ТБО)
На городских свалках ежегодно скапливаются сотни тысяч тонн бытовых отходов. Удельный годовой выход ТБО на одного жителя современного города составляет 250…700 кг. В развитых странах эта величина е

Переработка тбо на полигонах
В настоящее время ТБО городов как правило вывозятся на полигоны для захоронения с расчетом на их последующую минерализацию. Желательно, чтобы перед захоронением ТБО прессовали. Это не только снижае

Компостирование ТБО
Вторым направлением утилизации ТБО является переработка в органическое удобрение (компост). Можно компостировать до 60 % общей массы бытовых отходов. Процесс компостирования осуществляется во враща

Сжигание ТБО в специальных мусоросжигательных установках
В экономически развитых странах все больше количество ТБО перерабатывается промышленными способами. Наиболее эффективным из них является термический. Он позволяет почти в 10 раз снизить объем отход

Эффективное преобразование бесплатных лучей солнца в энергию, которую можно использовать для электроснабжения жилья и иных объектов, – заветная мечта многих апологетов зеленой энергетики.

Но принцип работы солнечной батареи, и ее КПД таковы, что о высокой эффективности таких систем пока говорить не приходится. Было бы неплохо обзавестись собственным дополнительным источником электроэнергии. Не так ли? Тем более что уже сегодня и в России с помощью гелиопанелей “дармовой” электроэнергией успешно снабжается немалое количество частных домохозяйств. Вы все еще не знаете с чего начать?

Ниже мы расскажем вам об устройстве и принципах работы солнечной панели, вы узнаете, от чего зависит эффективность гелиосистемы. А размещенные в статье видеоролики помогут собственноручно собрать солнечную панель из фотоэлементов.

В тематике «солнечной энергетики» достаточно много нюансов и путаницы. Часто новичкам разобраться во всех незнакомых терминах поначалу бывает трудно. Но без этого заниматься гелиоэнергетикой, приобретая себе оборудование для генерации “солнечного” тока, неразумно.

По незнанию можно не только выбрать неподходящую панель, но и попросту сжечь ее при подключении либо извлечь из нее слишком незначительный объем энергии.

Галерея изображений

Максимум отдачи от солнечной панели можно будет получить, только зная, как она работает, из каких компонентов и узлов состоит и как все это правильно подключается

Второй нюанс – это понятие самого термина «солнечная батарея». Обычно под словом «батарея» понимается некое аккумулирующее электроэнергию устройство. Либо на ум приходит банальный отопительный радиатор. Однако в случае с гелиобатареями ситуация кардинально иная. Они ничего в себе не накапливают.

Наиболее эффективными с энергетической точки зрения устройствами для превращения солнечной энергии в электрическую (т.к. это прямой, одноступенчатый переход энергии) являются полупроводниковые фотоэлектрические преобразователи (ФЭП). При характерной для ФЭП равновесной температуре порядка 300-350 Кельвинов и Т солнца ~ 6000 К их предельный теоретический КПД >90 % . Это означает, что, в результате оптимизации структуры и параметров преобразователя, направленной на снижение необратимых потерь энергии, вполне реально удастся поднять практический КПД до 50% и более (в лабораториях уже достигнут КПД 40%).

Теоретические исследования и практические разработки, в области фотоэлектрического преобразования солнечной энергии подтвердили возможность реализации столь высоких значений КПД с ФЭП и определили основные пути достижения этой цели.

Преобразование энергии в ФЭП основано на фотовольтаическом эффекте, который возникает в неоднородных полупроводниковых структурах при воздействии на них солнечного излучения.Неоднородность структуры ФЭП может быть получена легированием одного и того же полупроводника различными примесями (создание p - n-переходов) или путём соединения различных полупроводников с неодинаковой шириной запрещённой зоны-энергии отрыва электрона из атома (создание гетеропереходов), или же за счёт изменения химического состава полупроводника, приводящего к появлению градиента ширины запрещённой зоны (создание варизонных структур). Возможны также различные комбинации перечисленных способов. Эффективность преобразования зависит от электрофизических характеристик неоднородной полупроводниковой структуры, а также оптических свойств ФЭП, среди которых наиболее важную роль играет фотопроводимость, обусловленная явлениями внутреннего фотоэффекта в полупроводниках при облучении их солнечным светом. Принцип работы ФЭП можно пояснить на примере преобразователей с p-n- переходом, которые широко применяются в современной солнечной и космической энергетике. Электронно-дырочный переход создаётся путём легирования пластинки монокристаллического полупроводникового материала с определённым типом проводимости (т.е. или p- или n- типа) примесью, обеспечивающей создание поверхностного слоя с проводимостью противоположного типа. Концентрация легирующей примеси в этом слое должна быть значительно выше, чем концентрация примеси в базовом (первоначальном монокристалле) материале, чтобы нейтрализовать имеющиеся там основные свободные носители заряда и создать проводимость противоположного знака. У границы n-и p- слоёв в результате перетечки зарядов образуются обеднённые зоны с нескомпенсированным объёмным положительным зарядом в n-слое и объёмным отрицательным зарядом в p-слое. Эти зоны в совокупности и образуют p-n-переход. Возникший на переходе потенциальный барьер (контактная разность потенциалов) препятствует прохождению основных носителей заряда, т.е. электронов со стороны p-слоя, но беспрепятственно пропускают неосновные носители в противоположных направлениях. Это свойство p-n-переходов и определяет возможность получения фото-ЭДС при облучении ФЭП солнечным светом. Созданные светом в обоих слоях ФЭП неравновесные носители заряда (электронно-дырочные пары) разделяются на p-n-переходе: неосновные носители (т.е.электроны) свободно проходят через переход, а основные (дырки) задерживаются. Таким образом, под действием солнечного излучения через p-n-переход в обоих направлениях будет протекать ток неравновесных неосновных носителей заряда- фотоэлектронов и фотодырок, что как раз и нужно для работы ФЭП. Если теперь замкнуть внешнюю цепь, то электроны из n-слоя, совершив работу на нагрузке, будут возвращаться в p-слой и там рекомбинировать (объединяться) с дырками, движущимися внутри ФЭП в противоположном направлении. Для сбора и отвода электронов во внешнюю цепь на поверхности полупроводниковой структуры ФЭП имеется контактная система. На передней, освещённой поверхности преобразователя контакты выполняются в виде сетки или гребёнки, а на тыльной могут быть сплошными. Основные необратимые потери энергии в ФЭП связаны с:

  • Ш отражением солнечного излучения от поверхности преобразователя,
  • Ш прохождением части излучения через ФЭП без поглощения в нём,
  • Ш рассеянием на тепловых колебаниях решётки избыточной энергии фотонов,
  • Ш рекомбинацией образовавшихся фотопар на поверхностях и в объёме ФЭП,
  • Ш внутренним сопротивлением преобразователя,
  • Ш и некоторыми другими физическими процессами.

Для уменьшения всех видов потерь энергии в ФЭП разрабатываются и успешно применяется различные мероприятия. К их числу относятся:

ь использование полупроводников с оптимальной для солнечного излучения шириной запрещённой зоны;

ь направленное улучшение свойств полупроводниковой структуры путём её оптимального легирования и создания встроенных электрических полей;

ь переход от гомогенных к гетерогенным и варизонным полупроводниковым структурам;

ь оптимизация конструктивных параметров ФЭП (глубины залегания p-n-перехода, толщины базового слоя, частоты контактной сетки и др.);

ь применение многофункциональных оптических покрытий, обеспечивающих просветление, терморегулирование и защиту ФЭП от космической радиации;

ь разработка ФЭП, прозрачных в длинноволновой области солнечного спектра за краем основной полосы поглощения;

ь создание каскадных ФЭП из специально подобранных по ширине запрещённой зоны полупроводников, позволяющих преобразовывать в каждом каскаде излучение, прошедшее через предыдущий каскад, и пр.;

Также существенного повышения КПД ФЭП удалось добиться за счёт создания преобразователей с двухсторонней чувствительностью (до +80 % к уже имеющемуся КПД одной стороны), применения люминесцентно переизлучающих структур, предварительного разложения солнечного спектра на две или более спектральные области с помощью многослойных плёночных светоделителей (дихроичных зеркал) с последующим преобразованием каждого участка спектра отдельным ФЭП и т.д.5

В системах преобразования энергии СЭС (солнечных электростанций) в принципе могут быть использованы любые созданные и разрабатываемые в настоящее время типы ФЭП различной структуры на базе разнообразных полупроводниковых материалов, однако не все они удовлетворяют комплексу требований к этим системам:

  • · высокая надёжность при длительном (десятки лет!) ресурсе работы;
  • · доступность исходных материалов в достаточном для изготовления элементов системы преобразования количестве и возможность организации их массового производства;
  • · приемлемые с точки зрения сроков окупаемости энергозатраты на создание системы преобразования;
  • · минимальные расходы энергии и массы, связанные с управлением системой преобразования и передачи энергии (космос),включая ориентацию и стабилизацию станции в целом;
  • · удобство техобслуживания.

Так, например, некоторые перспективные материалы трудно получить в необходимых для создания СЭС количествах из-за ограниченности природных запасов исходного сырья и сложности его переработки. Отдельные методы улучшения энергетических и эксплутационных характеристик ФЭП, например, за счёт создания сложных структур, плохо совместимы с возможностями организации их массового производства при низкой стоимости и т.д. Высокая производительность может быть достигнута лишь при организации полностью автоматизированного производства ФЭП, например на основе ленточной технологии, и создании развитой сети специализированных предприятий соответствующего профиля, т.е. фактически целой отрасли промышленности, соизмеримой по масштабам с современной радиоэлектронной промышленностью. Изготовление солнечных элементов и сборка солнечных батарей на автоматизированных линиях обеспечит снижение себестоимости модуля батареи в 2-2,5 раза.В качестве наиболее вероятных материалов для фотоэлектрических систем преобразования солнечной энергии СЭС в настоящее время рассматривается кремний и арсенид галлия (GaAs), причём в последнем случае речь идёт о гетерофотопреобразователях (ГФП) со структурой AlGaAs-GaAs.

ФЭП (фотоэлектрические преобразователи) на основе соединения мышьяка с галлием (GaAs), как известно, имеют более высокий, чем кремниевые ФЭП, теоретический КПД, так как ширина запрещённой зоны у них практически совпадает с оптимальной шириной запрещённой зоны для полупроводниковых преобразователей солнечной энергии =1,4 эВ. У кремниевых этот показатель =1,1 эВ.

Вследствие более высокого уровня поглощения солнечного излучения, определяемого прямыми оптическими переходами в GaAs, высокие КПД ФЭП на их основе могут быть получены при значительно меньшей по сравнению с кремнием толщине ФЭП. Принципиально достаточно иметь толщину ГФП 5-6 мкм для получения КПД порядка не менее 20 %, тогда как толщина кремниевых элементов не может быть менее 50-100мкм без заметного снижения их КПД. Это обстоятельство позволяет рассчитывать на создание лёгких плёночных ГФП, для производства которых потребуется сравнительно мало исходного материала, особенно если в качестве подложки удастся использовать не GaAs ,а другой материал, например синтетический сапфир (Al 2 O 3).

ГФП обладают также более благоприятными с точки зрения требований к преобразователям СЭС эксплутационными характеристиками по сравнению с кремниевыми ФЭП. Так, в частности, возможность достижения малых начальных значений обратных токов насыщения в p-n-переходах благодаря большой ширине запрещённой зоны позволяет свести к минимуму величину отрицательных температурных градиентов КПД и оптимальной мощности ГФП и, кроме того, существенно расширять область линейной зависимости последней от плотности светового потока. Экспериментальные зависимости КПД ГФП от температуры говорят о том, что повышение равновесной температуры последних до 150-180 °С не приводит к существенному снижению их КПД и оптимальной удельной мощности. В то же время для кремниевых ФЭП повышение температуры выше 60-70 °С является почти критическим - КПД падает вдвое.

Благодаря устойчивости к высоким температурам арсенид-галлиевые ФЭП позволяют применять к ним концентраторы солнечного излучения. Рабочая температура ГФП на GaAs доходит до 180 °С, что уже является вполне рабочими температурами и для тепловых двигателей, паротурбин. Таким образом, к 30-процентному собственному КПД арсенид-галлиевых ГФП (при 150°C) можно прибавить КПД теплового двигателя, использующего сбросовое тепло охлаждающей фотоэлементы жидкости. Поэтому общий КПД установки, которая к тому же использует и третий цикл отбора низкотемпературного тепла у охлаждающей жидкости после турбины на обогрев помещений - может быть даже выше 50-60 %.

Также ГФП на основе GaAs в значительно меньшей степени, чем кремниевые ФЭП, подвержены разрушению потоками протонов и электронов высоких энергий вследствие высокого уровня поглощения света в GaAs, а также малых требуемых значений времени жизни и диффузионной длины неосновных носителей. Более того, эксперименты показали, что значительная часть радиационных дефектов в ГФП на основе GaAs исчезает после их термообработки (отжига) при температуре как раз порядка 150-180 °С. Если ГФП из GaAs будут постоянно работать при температуре порядка 150 °С, то степень радиационной деградации их КПД будет относительно небольшой на протяжении всего срока активного функционирования станций (особенно это касается космических солнечных энергоустановок, для которых важен малые вес и размер ФЭП и высокий КПД).

В целом можно заключить, что энергетические, массовые и эксплутационные характеристики ГФП на основе GaAs в большей степени соответствуют требованиям СЭС и СКЭС (космич.), чем характеристики кремниевых ФЭП. Однако кремний является значительно более доступным и освоенным в производстве материалом, чем арсенид галлия. Кремний широко распространён в природе, и запасы исходного сырья для создания ФЭП на его основе практически неограниченны. Технология изготовления кремниевых ФЭП хорошо отработана и непрерывно совершенствуется. Существует реальная перспектива снижения стоимости кремниевых ФЭП на один - два порядка при внедрении новых автоматизированных методов производства, позволяющих в частности, получать кремниевые ленты, солнечные элементы большой площади и т.п.

Цены на кремниевые фотоэлектрические батареи снизились за 25 лет в 20-30 раз с 70-100 долл/ватт в семидесятых годах вплоть до 3,5 долл/ватт в 2000 г. и продолжают снижаться далее. На Западе ожидается переворот в энергетике в момент перехода цены 3-долларового рубежа. По некоторым расчётам, это может произойти уже в 2002 г., а для России с нынешними энерготарифами этот момент наступит при цене 1 ватта СБ 0,3-0,5 доллара, то есть, при на порядок более низкой цене. Тут играют роль вместе взятые: тарифы, климат, географические широты, способности государства к реальному ценообразованию и долгосрочным инвестициям. В реально действующих структурах с гетеропереходами КПД достигает на сегодняшний день более 30% , а в однородных полупроводниках типа монокристаллического кремния - до 18%. Среднее значение КПД в солнечных батареях на монокристаллическом кремнии сегодня около 12%, хотя достигает и 18%. Именно, в основном, кремниевые СБ можно видеть сегодня на крышах домов разных стран мира.

В отличие от кремния галлий является весьма дефицитным материалом, что ограничивает возможности производства ГФП на основе GaAs в количествах, необходимых для широкого внедрения.

Галлий добывается в основном из бокситов, однако рассматривается также возможность его получения из угольной золы и морской воды. Самые большие запасы галлия содержатся в морской воде, однако его концентрация там весьма невелика, выход при извлечении оценивается величиной всего в 1% и, следовательно, затраты на производство будут, вероятно, чрезмерно большими. Технология производства ГФП на основе GaAs с использованием методов жидкостной и газовой эпитаксии (ориентированного роста одного монокристалла на поверхности другого {на подложке}), не развита ещё до такой степени, как технология производства кремниевых ФЭП и в результате этого стоимость ГФП сейчас существенно выше (на порядки) стоимости ФЭП из кремния.

В космических аппаратах, где основным источником тока являются солнечные батареи и где очень важны понятные соотношения массы, размера и КПД, главным материалом для солн. батарей, конечно, является арсенид галлия. Очень важна для космических СЭС способность этого соединения в ФЭП не терять КПД при нагревании концентрированным в 3-5 раз солнечным излучением, что соответственно, снижает потребности в дефицитном галлии. Дополнительный резерв экономии галлия связан с использованием в качестве подложки ГФП не GaAs, а синтетического сапфира (Al 2 O 3).Стоимость ГФП при их массовом производстве на базе усовершенствованной технологии будет, вероятно, также значительно снижена, и в целом стоимость системы преобразования системы преобразования энергии СЭС на основе ГФП из GaAs может оказаться вполне соизмеримой со стоимостью системы на основе кремния. Таким образом, в настоящее время трудно до конца отдать явное предпочтение одному из двух рассмотренных полупроводниковых материалов- кремнию или арсениду галлия, и лишь дальнейшее развитие технологии их производства покажет, какой вариант окажется более рационален для наземной и космической солнечных энергетик. Постольку-поскольку СБ выдают постоянный ток, то встаёт задача трансформации его в промышленный переменный 50 Гц,220 В. С этой задачей отлично справляется специальный класс приборов- инверторы.

Фотоэлектрический метод преобразования солнечной энергии в электрическую основан на явлении фотоэлектрического эффекта – освобождения электронов проводимости в приемнике излучения под действием квантов солнечного излучения.

Этот эффект используется в полупроводниковых материалах, в которых энергия квантов излучения h создает, например, на p n -переходе фототок

I ф =eN e ,

где N e – число электронов, создающих на переходе разность потенциалов, вследствие чего на переходе в обратном направлении потечет ток утечки I , равный фототоку, который является постоянным.

Потери энергии при фотоэлектрическом преобразовании обусловлены неполным использованием фотонов, а также рассеянием, сопротивлением и рекомбинацией уже возникших электронов проводимости .

Наиболее распространенным из выпускаемых промышленностью солнечных элементов (фотоэлементов) является пластинчатые кремниевые элементы. Существуют также и другие типы и конструкции, которые разрабатываются для повышения эффективности и снижения стоимости солнечных элементов.

Толщина солнечного элемента зависит от его способности поглощать солнечное излучение. Такие полупроводниковые материалы, как кремний, арсенид галлия и др. используются потому, что они начинают поглощать солнечное излучение с достаточно большой длиной волны, и могут преобразовывать в электричество его значительную долю. Поглощение солнечного излучения различными полупроводниковыми материалами достигает наибольшей величины при толщине пластин от 100 до 1 мкм и менее.

Уменьшение толщины солнечных элемента позволяет значительно снизить расход материалов и стоимость их изготовления.

Различия в поглощательный способности полупроводниковых материалов объясняется различиями в их атомном строении.

Эффективность преобразования солнечной энергии в электрическую не высока. Для кремневых элементов не более 12…14 %.

Чтобы повысить КПД солнечных элементов применяются просветляющие покрытия лицевой стороны солнечного элемента. В результате увеличивается доля проходящего солнечного излучения. У элементов без покрытия потери на отражение достигают 30 %.

В последнее время для изготовления солнечных элементов стали использовать ряд новых материалов. Одним из них является аморфный кремний, который в отличии от кристаллического не имеет регулярной структуры. Для аморфной структуры вероятность поглощения фотона и перехода в зону проводимости больше. Следовательно, он имеет большую поглощательную способность. Также находит применение арсенид галлия (GaAs). Теоретическая эффективность элементов на основе GaAs может достигнуть 25 %, реальные элементы имеют КПД около16 %.

Развивается технология тонкопленочных солнечных элементов. Несмотря на то, что КПД этих элементов в лабораторных условиях не превышает 16 %, они имеют более низкую стоимость. Это особенно ценно для снижения себестоимости и расхода материала в массовом производстве. В США и Японии изготавливают тонкопленочные элементы на аморфном кремнии площадью 0,1 …0,4 м 2 с КПД 8…9 %. Наиболее распространенным тонкопленочным фотоэлементом является элементы на основе сульфида кадмия (CdS) с КПД 10 %.

Другим достижением в технологии тонкопленочных солнечных элементов стало получение многослойных элементов. Они позволяют охватить большую часть спектра солнечного излучения.

Активный материал солнечного элемента стоит довольно дорого. Для более эффективного использования солнечное излучение собирают на поверхности солнечного элемента с помощью концентрирующих систем (рис. 2.7).

При увеличении радиационного потока характеристики элемента не ухудшаются, если его температура поддерживается на уровне температуры окружающего воздуха с помощью активного или пассивного охлаждения.

Существует большое количество концентрирующих систем, основанных на линзах (обычно плоских линзах Френеля), зеркалах, призмах полного внутреннего отражения и т.д. Если происходит сильно неравномерная облученность фотоэлементов или модулей, это может привести к разрушению солнечного элемента.

Использование концентрирующих систем позволяет снизить стоимость солнечных электростанций, так как концентрирующие элементы дешевле солнечных элементов .

По мере снижения цены на солнечные элементы, появилась возможность сооружения крупных фотоэлектрических установок. К 1984 г. было построено 14 относительно крупных солнечных электростанций мощностью от 200 кВт до 7 МВт в США, Италии, Японии, Саудовской Аравии и Германии.

Солнечная фотоэлектрическая установка имеет ряд достоинств. Она использует чистый и неиссякаемый источник энергии, не имеет движущихся частей и поэтому не требует постоянного контроля со стороны обслуживающего персонала. Солнечные элементы можно производить массовыми сериями, что приведет к снижению их стоимости.

Солнечные батареи собираются из солнечных модулей. При этом существует большой выбор типов и размеров этих устройств с одинаковой эффективностью преобразования энергии и одинаковой технологией производства.

Так как поступление солнечной энергии периодично, фотоэлектрические системы наиболее рационально включать в гибридные электростанции, использующие и солнечную энергию, и природный газ. На этих станциях может найти применение новое поколение газовых турбин. Гибридные маломощные электростанции, состоящие из фотоэлектрических панелей и дизельных генераторов, уже является надежными поставщиками энергии.

Рис.9. Солнечный элемент как пример фотоэлектрического преобразования

Фотопроводящие преобразователи

Эти преобразователи превращают изменение измеряемой величины в изменение сопротивления используемого материала (рис.8). Несмотря на то что используемые материалы являются полупроводниковыми, фотопроводящие преобразователи не всегда являются полупроводниковыми приборами, поскольку они не имеют переходов между различными типами полупроводников. Такие преобразователи называются пассивными, т.е. нуждаются во внешнем питании. Зачастую их название характеризует тип используемого преобразования, например светочувствительные резисторы.

Сопротивление материала является функцией плотности основных носителей заряда, и так как плотность увеличивается с возрастанием интенсивности излучения, то проводимость возрастает. Поскольку проводимость обратно пропорциональна сопротивлению, можно заключить, что сопротивление является обратной функцией интенсивности облучения. Значение сопротивления при полном облучении составляет в общем случае 100- 200 Ом, а в полной темноте это сопротивление равняется мегаомам. В конструкции зависящих от света резисторов чаще всего используются такие материалы, как сульфид кадмия или селенид кадмия.


Солнечные элементы

Солнечные элементы представляют собой фотоэлектрические преобразователи, которые превращают излучаемую электромагнитную энергию в электрическую, т.е. изменение измеряемого значения излучения преобразуется в изменение выходного напряжения (рис.9).

Конструкция преобразователя включает в себя слой фоточувcтвительного высокоомного материала, размещенного между двумя проводящими электродами. Один из электродов выполнен из прозрачного материала, через который проходит излучение и попадает на фоточувствительный материал. При полном освещении один элемент вырабатывает выходное напряжение между электродами около 0,5 В.

В качестве фотоэлектрического слоя (Рис.9) как правило, используют полупроводниковые вентильные фотоэлементы (фотоэлементы с запирающим слоем). Смотри: Конструкции вентильных фотоэлементов

Одним из самых важных параметров фотоэлемента, который используется в качестве источника электрической энергии, является коэффициент полезного действия (КПД). КПД солнечного элемента это отношение максимальной мощности электрического тока, который можно получить от фотоэлемента, к мощности светового излучения, падающего на фотоэлемент. КПД будет тем больше, чем большая часть спектра светового излучения участвует в генерации носителей тока. Одним из путей повышения КПД солнечных батарей есть создание фотоэлементов с максимально широкой спектральной характеристикой. Изготавливаемые из кремния фотоэлементы имеют КПД до 12%. Фотоэлементы на основе соединений арсенида галлия имеют КПД до 20%.