Откуда берется энергия нитрифицирующих бактерий? Бактерии нитрифицирующие Токсичность азотных соединений.

Еще в 1870 г. Шлезинг и Мюнц (Schloesing, Miintz) доказали, что нитрификация имеет биологическую природу. Для этого они добавляли к сточным водам хлороформ. В результате окисление аммиака прекращалось. Однако специфические микроорганизмы, вызывающие этот процесс, были выделены лишь Виноградским. Им же было показано, что хемоавтотрофные нитрификаторы могут быть подразделены на бактерий, осуществляющих первую фазу этого процесса, а именно окисление аммония до азотистой кислоты (NH4+->N02-), и бактерий второй фазы нитрификации, переводящих азотистую кислоту в азотную (N02-->-N03-). И те и другие микроорганизмы являются грамотрицательными. Их относят к семейству Nitrobacteriaceae.


Смотреть значение Нитрифицирующие Бактерии в других словарях

Бактерии Мн. — 1. Одноклеточные микроорганизмы.
Толковый словарь Ефремовой

Бактерии — [тэ́], -ий; мн. (ед. бакте́рия, -и; ж.). [от греч. baktērion - палочка]. Одноклеточные микроорганизмы. Почвенные б. Гнилостные б. Болезнетворные б.
◁ Бактериа́льный, -ая, -ое. Б-ая........
Толковый словарь Кузнецова

Бактерии — группа одноклеточных микроскоп, организмов. Вместе с сине-зелеными водорослями Б. представляют царство и надцарство прокариотов (см.), к-рое состоит из типов (отделов)........
Словарь микробиологии

Бактерии "лягушачьей Икры" — бактерии «лягушачьей икры»
см. слизь. бактерии маслянокислые – бактерии, возбудители маслянокислого брожения. Сахаролитические клостридии, анаэробные спорообразующие........
Словарь микробиологии

Бактерии "стебельковые" — бактерии «стебельковые»
бактерии, образующие выросты (стебельки), за счет которых они прикрепляются к субстрату. Водные формы. Примером служат представители рода Caulobacter.
Словарь микробиологии

Бактерии Водородные — большая группа бактерий, получающих энергию для роста путем аэробного окисления Н2 и осуществляющих ассимиляцию СО2 (хемосинтез). В то же время многие Б. в. хорошо растут........
Словарь микробиологии

Бактерии Газообразующие — бактерии, способные при росте на специальных субстратах образовывать газы–Н2,СО2 и др. Обычно это свойство используется как диагностический признак.
Словарь микробиологии

Бактерии Гноеродные — стафилококки, стрептококки и др. возбудители местного гнойного воспаления или общей инфекции организма животных и человека (сепсис).
Словарь микробиологии

Бактерии Денитрифицирующие — бактерии, способные осуществлять денитрификацию.
Словарь микробиологии

Бактерии Зелёные — фототрофные бактерии, культуры которых обычно имеют соответствующую окраску. Представлены двумя семействами. Семейство Chlorobiaceae – одноклеточные бактерии в виде палочек,........
Словарь микробиологии

Бактерии Кишечной Группы — бактерии сем. Enterobacte–riaceae, включающего ряд родов (Escherichia, Klebsiella, Enterobacter, Salmonella, Shigella и др.) – типичных обитателей кишечника животных и человека. При значительном разнообразии........
Словарь микробиологии

Бактерии Клубеньковые — бактерии родов Rhizobium, Bradyrhizobium, Azorhizobium, Sinorhizobium, азотфиксирующие симбиотические бактерии, образующие клубеньки на корнях бобовых растений – симбионтов. Внутри клубеньков........
Словарь микробиологии

Бактерии Кристаллоформные — спорообразующие бактерии Bacillus thuringiensis, вызывающие болезни у насекомых. Содержат в клетке крупные кристаллы эндотоксина, за что и получили свое название. Впервые были........
Словарь микробиологии

Бактерии Лизогенные — бактерии, содержащие фаг в состоянии профага и способные продуцировать зрелые фаговые частицы после индукции этого процесса антибиотиками, температурой, УФ и радиацией. См. также лизогения.
Словарь микробиологии

Бактерии Мезофильные — бактерии, для которых температурный оптимум для роста лежит в пределах 2°– 42 °C; большинство – почвенные и водные организмы.
Словарь микробиологии

Бактерии Метанокисляющие — бактерии, использующие метан как источник энергии и углерода. Грамотрицательные, подвижные и неподвижные, сферической, палочковидной или вибриоидной формы. Имеют развитую........
Словарь микробиологии

Бактерии Молочнокислые — бактерии родов Lactobacillus, Streptococcus и др., при сбраживании углеводов образуют молочную кислоту. Факультативные анаэробы, грамположительные палочки и кокки, спор не образуют.........
Словарь микробиологии

Бактерии Нитчатые — бактерии, растущие в виде длинных нитей, состоящих из цепочек клеток. Нередко имеют общую слизистую капсулу. Типичный представитель – железобактерии Leptothrix. См. также трихомные бактерии.
Словарь микробиологии

Бактерии Патогенные — бактерии, вызывающие болезни человека, животных и растений.
Словарь микробиологии

Бактерии Пропионовокислые — бактерии рода Propioni–bacterium и др., сбраживающие углеводы с образованием пропионовой, уксусной кислот. Обитатели рубца и кишечника жвачных. Используются в производстве........
Словарь микробиологии

Бактерии Простековые — бактерии простекообразующие, бактерии простекатные – см. простекобактерии.
Словарь микробиологии

Бактерии Психрофильные — БАКТЕРИИ КРИОФИЛЬНЫЕ – бактерии, растущие с максимальной скоростью при температурах ниже 2° °С. Напр., некоторые морские светящиеся бактерии, железобактерии (Gallionella).
Словарь микробиологии

Бактерии Пурпурные — группа фототрофных бактерий. По морфологии – кокки, палочки и извитые формы, неподвижные и подвижные за счет жгутиков, грамотрицательные. Размножаются делением и почкованием.........
Словарь микробиологии

Бактерии Сапротрофные — (уст. сапрофитные) – бактерии, превращающие органические вещества отмерших организмов в неорганические, обеспечивая круговорот веществ в природе. Термин используется........
Словарь микробиологии

Бактерии Светящиеся — хемоорганотрофные бактерии, способные к биолюминесценции (роды Photobacterium, Beneckea) в присутствии кислорода. Обычно морские формы.
Словарь микробиологии

Бактерии Спорообразующие — бактерии, обладающие способностью образовывать термоустойчивые споры при наступлении неблагоприятных для роста условий. Аэробные и факультативно аэробные Б. с. относят........
Словарь микробиологии

Бактерии Сульфатредуцирующие — бактерии сульфат–восстанавливающие, сульфатредукторы – физиологическая группа бактерий, восстанавливающих сульфат до сероводорода в анаэробных условиях (см. анаэробное........
Словарь микробиологии

Бактерии Термофильные — бактерии, хорошо растущие при температурах выше 40 °С; для большинства из них верхний предел температуры – 70 °С. В отличие от Б.т. термотолерантные бактерии растут до........
Словарь микробиологии

Бактерии Тионовые — серобактерии, получающие энергию за счет окисления серы и ее восстановленных неорганических соединений преимущественно до сульфатов. Обычно название Б. т. применяется........
Словарь микробиологии

Бактерии Уксуснокислые — группа бактерий, способных образовывать органические кислоты путем неполного окисления сахаров или спиртов. В качестве конечного продукта образуют уксусную, гликолевую,........
Словарь микробиологии

22 апреля 2016

По типу питания все известные живые организмы делятся на два больших вида: гетеро- и автотрофы. Отличительной особенностью последних является их способность к самостоятельному построению новых элементов из углекислоты и других неорганических веществ.

Источники энергии, поддерживающие их жизнедеятельность, обусловливают их деление на фотоафтотрофы (источник - свет) и хемоавтотрофы (источник - минеральные вещества). А в зависимости от названия субстрата, который окисляют хемоавтортофы, они разделяются на водородные и нитрифицирующие бактерии, а также на серо- и железобактерии.

Данная статья будет посвящена наиболее распространенной среди них группе - нитрофицирующим бактериям.

История открытия

Еще в середине 19 века немецкими учеными было доказано, что процесс нитрификации является биологическим. Опытным путем они показали, что при добавлении к канализационным водам хлороформа останавливалось окисление аммиака. Но объяснить, почему так происходит, они не смогли.

Это удалось сделать несколькими годами позже русскому ученому Виноградскому. Он выделил две группы бактерий, которые поэтапно брали участие в процессе нитрификации. Так, одна группа обеспечивала окисление аммония до кислоты азотистой, а уже вторая группа бактерий отвечала за ее превращение в азотную. Все задействованные в этом процессе нитрифицирующие бактерии являются грамотрицательными.

Особенности процесса окисления

Процесс образования нитритов путем окисления аммония имеет несколько этапов, в ходе которых образуются азотсодержащие соединения с различной степенью окисленности группы NH.

Первым продуктом окисления аммония является гидроксиламин. Вероятней всего, он образуется из-за включения молекулярного кислорода в группу NH 4 , хотя окончательно этот процесс не доказан и остается дискутабельным.

Далее гидроксиламин превращается в нитрит. Предположительно, процесс осуществляется через образование NOH (гипонитрита) с выделением закиси азота. В этом случае ученые считают продукцию закиси азота всего лишь побочным продуктом синтеза, из-за восстановления нитрита.

Кроме продукции химических элементов, в ходе денитрофикации выделяется большое количество энергии. Подобно происходящему у гетеротрофных аэробных организмов, в данном случае синтез молекул АТФ связан с окислительно-восстановительными процессами, в результате которых на кислород передаются электроны.

При окислении нитрита большую роль играет процесс обратного транспорта электронов. Включение его электронов в цепь происходит непосредственно в цитохромах (С-типа и/или А-типа), а для этого требуется достаточно большие затраты энергии. Как результат, хемоавтотрофные нитрифицирующие бактерии полностью обеспечены нужным запасом энергии, которая используется для процессов построения и усвоения углекислоты.

Виды нитрифицирующих бактерий

В первой фазе нитрификации берут участие четыре рода нитробактерий:

  • нитросомонас;
  • нитроцистис;
  • нитросолюбус;
  • нитрососпира.

Кстати, на предложенном изображении вы можете видеть нитрифицирующие бактерии (фото под микроскопом).

Экспериментальным путем среди них достаточно сложно, а зачастую и вовсе невозможно выделить одну из культур, поэтому их рассмотрение преимущественно комплексное. Все из перечисленных микроорганизмов имеют размер до 2-2,5 мкм и преимущественно овальную или округлую форму (за исключением нитроспиры, которые имеют вид палочки). Они способны к бинарному делению и направленному движению за счет жгутиков.

Во второй фазе нитрификации принимают участие:

  • род нитробактер;
  • род нитроспина;
  • нитрококус.

Наиболее изучен штамм бактерий рода нитрбактер, имеющий название в честь своего первооткрывателя Виноградского. Эти бактерии нитрифицирующие имеют грушевидную форму клеток, размножаются почкованием, с образованием подвижной (за счет жгутика) дочерней клетки.

Строение бактерий

Исследованные нитрифицируюшие бактерии имеют схожее клеточное строение с другими грамотрицательными микроорганизмами. Некоторые из них имеют достаточно развитую систему внутренних мембран, образующих стопку в центре клетки, тогда как у других они располагаются больше по периферии или образуют структуру в виде чаши, состоящую из нескольких листков. По всей видимости, именно с этими образованиями связаны ферменты, которые участвуют в процессе окисления нитрификаторами специфических субстратов.

Тип питания нитрифицирующих бактерий

Нитробактерии относятся к облигатным автотрофам, поскольку не способны использовать экзогенные органические вещества. Однако экспериментальным путем все же показана способность некоторых штаммов нитрифицирующих бактерий использовать некоторые органические соединения.

Было выявлено, что субстрат, содержащий дрожжевые автолизаты, серин и глутамат в низких концентрациях, стимулирующим образом воздействовал на рост нитробактерий. Это происходит как при наличии нитрита, так и при его отсутствии в питательной среде, хотя процесс протекает гораздо медленнее. И наоборот, при наличии нитрита процесс окисления ацетата подавляется, но значительно увеличивается включение его углерода в белок, различные аминокислоты и другие клеточные компоненты.

В результате множественных экспериментов были получены данные о том, что бактерии нитрифицирующие все же могут переключаться на гетеротрофное питание, но насколько продуктивно и как долго они могут существовать в таких условиях, еще предстоит выяснить. Пока данные достаточно противоречивы, чтобы делать окончательные умозаключения по этому поводу.

Среда обитания и значение нитрифицирующих бактерий

Нитрифицирующие бактерии относятся к хемоавтотрофам и имеют широкое распространение в природе. Они встречаются повсеместно: в почве, различных субстратах, а также водоемах. Процесс их жизнедеятельности вносит большой вклад в общий круговорот азота в природе и в действительности может достигать огромных масштабов.

Например, такой микроорганизм, как нитроцистис океанус, выделенный из Атлантического океана, относится к облигатным галофилам. Он может существовать только в морской воде или субстратах, содержащих ее. Для таких микроорганизмов важна не только среда обитания, но и такие константы, как рН и температура.

Все известные нитрифицирующие бактерии относят к облигатным аэробам. Для того чтобы окислить аммоний в азотистую кислоту, а азотистую кислоту в азотную, им нужен кислород.

Условия обитания

Еще одним важным моментом, который выявили ученые, стало то, что место, где живут нитрифицирующие бактерии, не должно содержать органических веществ. Была выдвинута теория, что эти микроорганизмы в принципе не могут использовать органические соединения из вне. Их даже назвали облигатными автотрофами.

В последующем неоднократно было доказано пагубное влияние глюкозы, мочевины, пептона, глицерина и другой органики на бактерии нитрифицирующие, но эксперименты не останавливаются.

Значение нитрифицирующих бактерий для почвы

До недавнего времени считалось, что нитрификаторы благоприятно влияют на почву, увеличивая ее плодородность путем расщепления аммония до нитратов. Последние не только хорошо абсорбируются растениями, но и сами по себе повышают растворимость некоторых минеральных веществ.

Однако, в последние годы научные взгляды претерпевают изменения. Выявлено отрицательное действие описываемых микроорганизмов на плодородность почвы. Бактерии нитрифицирующие, образуя нитраты, подкисляют среду, что не всегда является положительным моментом, а также в большей степени провоцируют насыщение почвой ионов аммония, чем нитратов. Более того, нитраты имеют способность восстанавливаться до N 2 (в процессе денитрифакации), что в свою очередь ведет к обеднению почвы азотом.

В чем опасность нитрифицирующих бактерий?

Некоторые штаммы нитробактерий в присутствии органического субстрата могут окислять аммоний, образовывая гидроксиламин, а в последующем нитриты и нитраты. Также в результате таких реакций могут возникать гидроксамовые кислоты. Более того, ряд бактерий осуществляет процесс нитрификации различных соединений, в состав которых входит азот (оксимы, амины, амиды, гидроксаматы и другие нитросоединения).

Масштабы гетеротрофной нитрификации при определенных условиях могут быть не только огромными, но и весьма пагубными. Опасность заключается в том, что в ходе таких превращений происходит образование токсических веществ, мутагенов и канцерогенов. Поэтому ученые пристально работают над изучением данной темы.

Биологический фильтр, который всегда под рукой

Нитрифицирующие бактерии - это не абстрактное понятие, а весьма распространенная форма жизни. Более того, они часто используются человеком.

Например, в состав биологических фильтров для аквариумов входят именно эти бактерии. Данный вид очистки менее затратный и не такой трудоемкий, как механическая очистка, но в тоже время требует соблюдения определенных условий, чтобы обеспечить рост и жизнедеятельность нитрифицирующим бактериям.

Наиболее благоприятным микроклиматом для них является температура окружающей среды (в данном случае воды) порядка 25-26 градусов Цельсия, постоянный приток кислорода и наличие водных растений.

Нитрифицирующие бактерии в сельском хозяйстве

Для того чтобы повысить урожайность, аграрии используют различные удобрения, содержащие нитрифицирующие бактерии.

Питание почвы в таком случае обеспечивается нитробактериями и азотобактериями. Эти бактерии извлекают из почвы и воды необходимые вещества, которые в процессе окисления образуют достаточно большое количество энергии. Это так называемый процесс хемосинтеза, когда полученная энергия идет на образование сложных молекул органического происхождения из углекислого газа и воды.

Для этих микроорганизмов не обязательно поступление питательных веществ с окружающей их среды - они могут продуцировать их самостоятельно. Так, если зеленым растениями, которые также являются автотрофами, необходим солнечный свет, то для нитрифицирующих бактерий он не обязателен.

Самоочистка почвы

Почва - это идеальный субстрат для роста и размножения не только растений, но и множества живых организмов. Поэтому крайне важно ее нормальное состояние и сбалансированный состав.

Следует помнить, что биологическую очистку почвы обеспечивают в том числе и нитрифицирующие бактерии. Они, находясь в почве, водоемах или перегное, превращают аммиак, который выделяют другие микроорганизмы и отходные органические материалы, в нитраты (если быть более точными, то в соли азотной кислоты). Весь процесс состоит из двух этапов:

  1. Окисление аммиака до нитрита.
  2. Окисление нитрита до нитрата.

При этом каждый этап обеспечивается отдельными видами микроорганизмов.

Так называемый замкнутый круг

Кругооборот энергии и поддержание жизни на Земле возможно благодаря соблюдению определенных закономерностей существования всего живого. На первый взгляд трудно понять, о чем идет речь, но на самом деле все достаточно просто.

Давайте представим следующую картинку из школьного учебника:

  1. Неорганические вещества перерабатываются микроорганизмами и тем самым создают благоприятные условия в почве для роста и питания растений.
  2. Они, в свою очередь, являются незаменимым источником энергии для большинства травоядных животных.
  3. Следующей цепочкой этого жизненного звена являются хищники, энергией для которых являются, соответственно, их травоядные собратья.
  4. Люди, как известно, относятся к высшим хищникам, а это значит, что мы можем получать энергию как от растительного мира, так и от животного.
  5. А уже наши собственные остатки жизнедеятельности, а также тех самых растений и животных, служат питательным субстратом для микроорганизмов.

Таким образом, получается замкнутый круг, непрерывно функционирующий и обеспечивающий жизнь всего живого на Земле. Зная эти принципы, не сложно представить, насколько многогранна и на самом деле безгранична сила природы и всего живого.

Заключение

В данной статье мы попытались дать ответ на вопрос, что такое нитрифицирующие бактерии в биологии. Как видите, несмотря на неопровержимые доказательства жизнедеятельности, функционирования и влияния этих микроорганизмов, существует еще множество спорных вопросов, требующих дальнейших экспериментальных исследований.

Нитрифицирующие бактерии относят к хемотрофам. Источником энергии для них служат различные минеральные вещества. Несмотря на свои микроскопические размеры, эти живые организмы оказывают огромное влияние на окружающий их мир.

Как известно, хемотрофы не могут усваивать органические соединения, которые находятся в субстрате (почвенном или водном). Они, наоборот, продуцируют строительный материал для создания живой и функционирующей клетки.

  • Автофото трофы - энергию для синтеза органических веществ получают из света (фотосинтез). К фототрофам относятся растения и фотосинтезирующие бактерии.
  • Автохемо трофы - энергию для синтеза органических веществ получают при окислении неорганических веществ (хемосинтез). Например,
    • серобактерии окисляют сероводород до серы,
    • железобактерии окисляют двухвалентное железо до трехвалентного,
    • нитрифицирующие бактерии окисляют аммиак до азотной кислоты.

Сходство и различие фотосинтеза и хемосинтеза

  • Сходства: все это пластический обмен, из неорганических веществ делаются органические (из углекислого газа и воды - глюкоза).
  • Различие: энергия для синтеза при фотосинтезе берется из света, а при хемосинтезе - из окислительно-восстановительных реакций.


ВНИМАНИЕ! Разница между авто- и гетеротрофами состоит в способе получения органических веществ («получают готовые» или «делают сами»). Энергию для жизнедеятельности и авто-, и гетеротрофы получают путем дыхания.

Сравнение дыхания и фотосинтеза

Тесты и задания

АВТОТРОФЫ
Выберите три варианта. К автотрофам относят

1) споровые растения
2) плесневые грибы
3) одноклеточные водоросли
4) хемотрофные бактерии
5) вирусы
6) большинство простейших

Ответ


1. Определите два организма, «выпадающих» из списка автотрофных организмов, и запишите цифры, под которыми они указаны.
1) Амеба обыкновенная
2) Венерина мухоловка
3) Пинуллярия зеленая
4) Инфузория туфелька
5) Спирогира

Ответ


2. Все приведённые ниже организмы, кроме двух, по типу питания относят к автотрофам. Определите два организма, «выпадающих» из общего списка, и запишите цифры, под которыми они указаны.
1) хламидомонада
2) хвощ полевой
3) подосиновик
4) кукушкин лён
5) дрожжи

Ответ


3. Все приведённые ниже организмы, кроме двух, по типу питания относят к автотрофам. Определите два организма, «выпадающих» из общего списка, и запишите цифры, под которыми они указаны.
1) серобактерия
2) спирогира
3) мухомор
4) сфагнум
5) бактериофаг

Ответ


4. Все приведённые ниже организмы, кроме двух, по типу питания относят к автотрофам. Определите два организма, «выпадающих» из общего списка, и запишите цифры, под которыми они указаны.
1) цианобактерия
2) амёба
3) ламинария
4) сфагнум
5) пеницилл

Ответ


Ответ


Выберите один, наиболее правильный вариант. По способу питания подавляющее большинство бактерий
1) автотрофы
2) сапротрофы
3) хемотрофы
4) симбионты

Ответ


Выберите один, наиболее правильный вариант. Какой организм по способу питания относят к гетеротрофам?
1) хламидомонаду
2) ламинарию
3) пеницилл
4) хлореллу

Ответ


Выберите один, наиболее правильный вариант. Бактерии гниения являются по способу питания организмами
1) хемотрофными
2) автотрофными
3) гетеротрофными
4) симбиотическими

Ответ


АВТОТРОФЫ - ГЕТЕРОТРОФЫ
1. Установите соответствие между особенностью обмена веществ и группой организмов, для которых она характерна: 1) автотрофы, 2) гетеротрофы

А) выделение кислорода в атмосферу
Б) использование энергии, заключенной в пище, для синтеза АТФ
В) использование готовых органических веществ
Г) синтез органических веществ из неорганических
Д) использование углекислого газа для питания

Ответ


2. Установите соответствие между характеристикой и способом питании организмов: 1) автотрофный, 2) гетеротрофный. Запишите цифры 1 и 2 в правильном порядке.
А) источником углерода служит углекислый газ
Б) сопровождается фотолизом воды
В) используется энергия окисления органических веществ
Г) используется энергия окисления неорганических веществ
Д) поступление пищи путем фагоцитоза

Ответ


3. Установите соответствие между особенностью питания организма и группой организмов: 1) автотрофы, 2) гетеротрофы. Запишите цифры 1 и 2 в порядке, соответствующем буквам.
А) захватывают пищу путём фагоцитоза
Б) используют энергию, освобождающуюся при окислении неорганических веществ
В) получают пищу путём фильтрации воды
Г) синтезируют органические вещества из неорганических
Д) используют энергию солнечного света
Е) используют энергию, заключённую в пище

Ответ


АВТОТРОФЫ - ГЕТЕРОТРОФЫ ПРИМЕРЫ
1. Установите соответствие между примером и способом питания: 1) автотрофный, 2) гетеротрофный. Запишите цифры 1 и 2 в правильном порядке.

А) цианобактерии
Б) ламинария
В) бычий цепень
Г) одуванчик
Д) лисица

Ответ


2. Установите соответствие между организмом и типом питания: 1) автотрофное, 2) гетеротрофное. Запишите цифры 1 и 2 в порядке, соответствующем буквам.
А) сосна сибирская
Б) кишечная палочка
В) амебa человеческая
Г) пеницилл
Д) хвощ полевой
Е) хлорелла

Ответ


3. Установите соответствие между одноклеточным организмов и типом питания, который для него характерен: 1) автотрофный, 2) гетеротрофный. Запишите цифры 1 и 2 в порядке, соответствующем буквам.
А) холерный вибрион
Б) железобактерия
В) малярийный плазмодий
Г) хламидомонада
Д) цианобактерия
Е) дизентерийная амёба

Ответ


4. Установите соответствие между примерами и способами питания: 1) автотрофный, 2) гетеротрофный. Запишите цифры 1 и 2 в порядке, соответствующем буквам.
А) спирогира
Б) бычий цепень
В) хвощ полевой
Г) серобактерия
Д) зеленый кузнечик

Ответ


5. Установите соответствие между примерами и способами питания: 1) автотрофный, 2) гетеротрофный. Запишите цифры 1 и 2 в порядке, соответствующем буквам.
А) хлорелла
Б) лягушка
В) шампиньон
Г) папоротник
Д) ламинария

Ответ


СОБИРАЕМ 6:
А) мукор
Б) нитрифицирующие бактерии
В) трутовик

ХЕМОТРОФЫ
Выберите один, наиболее правильный вариант. Какие организмы преобразуют энергию окисления неорганических веществ в макроэргические связи АТФ?

1) фототрофы
2) хемотрофы
3) гетеротрофы
4) сапротрофы

Ответ


Хемосинтезирующие бактерии способны получать энергию из соединений всех элементов, кроме двух. Определите два элемента, «выпадающих» из общего списка, и запишите цифры, под которыми они указаны.
1) Азот
2) Хлор
3) Железо
4) Магний
5) Сера

Ответ


ФОТОТРОФЫ - ХЕМОТРОФЫ
Установите соответствие между характеристикой организмов и способом их питания: 1) фототрофный, 2) хемотрофный. Запишите цифры 1 и 2 в правильном порядке.

А) используется энергия света
Б) происходит окисление неорганических веществ
В) реакции протекают в тилакоидах
Г) сопровождается выделением кислорода
Д) присущ водородным и нитрифицирующим бактериям
Е) требует наличия хлорофилла

Ответ


Выберите один, наиболее правильный вариант. Сходство хемосинтеза и фотосинтеза состоит в том, что в обоих процессах
1) на образование органических веществ используется солнечная энергия
2) на образование органических веществ используется энергия, освобождаемая при окислении неорганических веществ
3) в качестве источника углерода используется углекислый газ
4) в атмосферу выделяется конечный продукт - кислород

Ответ


ФОТОТРОФЫ - ХЕМОТРОФЫ ПРИМЕРЫ
1. Установите соответствие между группой организмов и процессом превращения веществ, который для нее характерен: 1) фотосинтез, 2) хемосинтез

А) папоротникообразные
Б) железобактерии
В) бурые водоросли
Г) цианобактерии
Д) зеленые водоросли
Е) нитрифицирующие бактерии

Ответ


2. Установите соответствие между примерами и способами питания живых организмов: 1) фототрофный, 2) хемотрофный. Запишите цифры 1 и 2 в порядке, соответствующем буквам.
А) спирогира
Б) нитрифицирующая бактерия
В) хлорелла
Г) серобактерии
Д) железобактерии
Е) хлорококк

Ответ


ФОТОТРОФЫ - ХЕМОТРОФЫ - ГЕТЕРОТРОФЫ
1. Установите соответствие между организмом и способом его питания: 1) фототрофный, 2) гетеротрофный, 3) хемотрофный. Запишите цифры 1, 2 и 3 в правильном порядке.

А) спирогира
Б) пеницилл
В) серобактерия
Г) цианобактерия
Д) дождевой червь

Ответ


2. Установите соответствие между организмами и типами их питания: 1) фототрофный, 2) гетеротрофный. Запишите цифры 1 и 2 в порядке, соответствующем буквам.
А) лямблия
Б) гриб спорынья
В) хламидомонада
Г) цианобактерия
Д) сфагнум

Ответ


ФОТОСИНТЕЗ - ДЫХАНИЕ
1. Установите соответствие между характеристикой и процессом: 1) фотосинтез, 2) гликолиз. Запишите цифры 1 и 2 в правильном порядке.

А) происходит в хлоропластах
Б) синтезируется глюкоза
В) является этапом энергетического обмена
Г) происходит в цитоплазме
Д) происходит фотолиз воды

Ответ


2. Установите соответствие между характеристикой и процессом жизнедеятельности растения, к которому её относят: 1-фотосинтез, 2-дыхание
1) синтезируется глюкоза
2) окисляются органические вещества
3) выделяется кислород
4) образуется углекислый газ
5) происходит в митохондриях
6) сопровождается поглощением энергии

Ответ


3. Установите соответствие между процессом и видом обмена веществ в клетке: 1) фотосинтез, 2) энергетический обмен
А) образование пировиноградной кислоты (ПВК)
Б) происходит в митохондриях
В) фотолиз молекул воды
Г) синтез молекул АТФ за счет энергии света
Д) происходит в хлоропластах
Е) синтез 38 молекул АТФ при расщеплении молекулы глюкозы

Ответ


4. Установите соответствие между признаком жизнедеятельности растений и процессом дыхания или фотосинтеза: 1) дыхание, 2) фотосинтез
А) осуществляется в клетках с хлоропластами
Б) происходит во всех клетках
В) поглощается кислород
Г) усваивается углекислый газ
Д) образуются органические вещества из неорганических на свету
Е) окисляются органические вещества

Ответ


5. Установите соответствие особенностями и между процессами: 1) фотосинтез, 2) дыхание. Запишите цифры 1 и 2 в правильном порядке.
А) АТФ образуется в хлоропластах
Б) происходит во всех живых клетках
В) АТФ образуется в митохондриях
Г) конечные продукты – органические вещества и кислород
Д) исходные вещества – углекислый газ и вода
Е) энергия высвобождается

Ответ


6. Установите соответствие между процессами и их особенностями: 1) дыхание, 2) фотосинтез. Запишите цифры 1 и 2 в порядке, соответствующем буквам.
А) кислород поглощается, а углекислый газ и вода выделяются
Б) органические вещества образуются
В) происходит в хлоропластах на свету
Г) углекислый газ и вода поглощаются, а кислород выделяется
Д) происходит в митохондриях на свету и в темноте
Е) органические вещества расщепляются

Ответ


Установите соответствие между процессом, протекающим в клетке, и органоидом, в котором он происходит: 1) митохондрия, 2) хлоропласт. Запишите цифры 1 и 2 в правильной последовательности.
А) восстановление углекислого газа до глюкозы
Б) синтез АТФ в процессе дыхания
В) первичный синтез органических веществ
Г) превращение световой энергии в химическую
Д) расщепление органических веществ до углекислого газа и воды

Ответ


Установите соответствие между признаками органоида и органоидом, для которого эти признаки характерны: 1) Хлоропласт, 2) Митохондрия. Запишите цифры 1 и 2 в правильном порядке.
А) Содержит зелёный пигмент
Б) Состоит из двойной мембраны, тилакоидов и гран
В) Преобразует энергию света в химическую энергию
Г) Состоит из двойной мембраны и крист
Д) Обеспечивает окончательное окисление питательных веществ
Е) Запасает энергию в виде 38 моль АТФ при расщеплении 1 моль глюкозы

Ответ


ДЫХАНИЕ РАСТЕНИЙ
Выберите один, наиболее правильный вариант. В процессе дыхания растения обеспечиваются

1) энергией
2) водой
3) органическими веществами
4) минеральными веществами

Ответ


Выберите один, наиболее правильный вариант. Культурные растения плохо растут на заболоченной почве, так как в ней
1) недостаточное содержание кислорода
2) происходит образование метана
3) избыточное содержание органических веществ
4) содержится много торфа

Ответ


Выберите один, наиболее правильный вариант. Растения в процессе дыхания используют кислород, который поступает в клетки и обеспечивает
1) окисление неорганических веществ до углекислого газа и воды
2) окисление органических веществ с освобождением энергии
3) синтез органических веществ из неорганических
4) синтез белка из аминокислот

Ответ


Выберите один, наиболее правильный вариант. Растения в процессе дыхания
1) выделяют кислород и поглощают углекислый газ
2) поглощают кислород и выделяют углекислый газ
3) накапливают энергию в образующихся органических веществах
4) синтезируют органические вещества из неорганических

Ответ


Выберите один, наиболее правильный вариант. Чтобы обеспечить доступ кислорода воздуха к корням растений, почву надо
1) удобрять солями калия
2) рыхлить до полива и во время полива
3) удобрять азотными солями
4) рыхлить после полива

Ответ


Проанализируйте текст «Дыхание растений». Для каждой ячейки, обозначенной буквой, выберите соответствующий термин из предложенного списка. Процесс дыхания растений протекает постоянно. В ходе этого процесса организм растения потребляет ________ (А), а выделяет ________ (Б). Ненужные газообразные вещества удаляются из растения путём диффузии. В листе они удаляются через особые образования - ________ (В), расположенные в кожице. При дыхании освобождается энергия органических веществ, запасённая в ходе ________ (Г), происходящего в зелёных частях растения на свету.
1) вода
2) испарение
3) кислород
4) транспирация
5) углекислый газ
6) устьица
7) фотосинтез
8) чечевичка

Ответ


© Д.В.Поздняков, 2009-2019

Бактерии встречаются даже в самых отдаленных от берега местах Ледовитого океана. Б. Л. Исаченко обнаружил нитрифицирующие, денитрифицирующие бактерии, а также бактерии, восстанавливающие сернокислые соли и усваивающие атмосферный азот (Azotobactвr и С1. ра,51еиг1апит) на глубине 100 м при общей глубине моря 180 м. Морские микробы лучше развиваются при содержании в воде 2-3% хлористого натрия.[ ...]

Нитрифицирующие бактерии могут повышать потребность в кислороде при анализах по определению БПК, как показано в уравнениях (3.7) и (3.8). К счастью, рост нитрифицирующих бактерий отстает от роста микроорганизмов, осуществляющих окисление углеродсодержащих веществ. Нитрификация обычно начинается через несколько дней после пятисуточного периода, в течение которого определяют БПК5 неочищенной сточной воды. В стоках, поступающих в очистные установки, и в воде водоемов могут быть обнаружены признаки ранней нитрификации, если проба имеет относительно высокую популяцию нитрифицирующих бактерий. Нет ни одного стандартного метода, рекомендуемого для предотвращения нитрификации; однако такие ингибирующие агенты, как тиомочевина или 2-хлор-6-трихлорметилпиридин при использовании специальной лабораторной методики можно применять для; прекращения образования нитратов.[ ...]

Бактерии-симбионты населяют кишечник травоядных животных; бактериальная микрофлора кишечника человека участвует в процессах переваривания целлюлозы (растительной клетчатки). Эти бактерии также синтезируют некоторые витамины. Нитрифицирующие бактерии - симбионты бобовых растений - обогащают почву азотом.[ ...]

Бактерии первой фазы нитрификации представлены четырьмя родами: Nitrosomonas, Nitrosocystis, Nitrosolobus и Nitrosospira. Из них наиболее изучен вид Nitrosomonas euro-раеа, хотя получение чистых культур этих микроорганизмов, как и других нитрифицирующих хемоавтотрофов, до сих пор остается достаточно сложным. Клетки N. europaea обычно овальные (0,6 -1,0 X 0,9-2,0 мкм), размножаются бинарным делением. В процессе развития культур в жидкой среде наблюдаются подвижные формы, имеющие один или несколько жгутиков, и неподвижные зооглеи.[ ...]

Нитрифицирующие бактерии относятся к группе автотрофов, получающих энергию из химических процессов, протекающих с неорганическими соединениями в отличие от фототрофов, использующих энергию света , либо от гетеротрофов, усваивающих углерод органических соединений . Денитрификаторы относятся к гетеротрофным бактериям; при недостатке кислорода они усваивают кислород нитритов и нитратов и используют его для окисления органических веществ. Образующийся при этом азот выделяется в свободном виде и возвращается в атмосферу. Некоторые виды микроорганизмов могут восстанавливать нитраты до аммиака . В настоящее время в процессах кругооборота азота в природе отмечается отставание процессов денитрификации от фиксации .[ ...]

Нитрифицирующие бактерии представлены двумя основными зидами: Nitrosomosonas и Nitrobacter. Почти всегда в больших или меньших количествах в илах присутствуют нитчатые бактерии Sphaerotilus u Cladothrix.[ ...]

Нитрифицирующие бактерии растут на простых минеральных средах, содержащих окисляемый субстрат в виде аммония или нитритов и углекислоту. Источником азота в конструктивных процессах могут быть, кроме аммония, гидроксиламин и нитриты.[ ...]

Нитрифицирующие бактерии чувствительны к присутствию ингибиторов в коммунальных стоках (см. разд. 3.4.4). Ингибирование может привести к необходимости в изменении вида уравнения роста и(или) значений констант. Для описания таких ситуаций существует несколько новых формулировок уравнения роста и введены новые параметры.[ ...]

Нитрифицирующие бактерии являются доминирующими в третьем реакторе, поскольку в воде осталось мало органического вещества.[ ...]

Для нитрифицирующих бактерий характерны низкие скорости роста, что связано с низким энергетическим выходом реакций окисления аммиака и нитрита. Медленный рост таких бактерий - основная проблема при нитрификации на станциях биологической очистки стоков.[ ...]

Для адаптации нитрифицирующих бактерий I фазы берется среда с аммонийно-магнезиальным фосфатом. Затем в нее вносят 1 мл/л воды, содержащей нитризомонас и немного испытуемого вещества.[ ...]

Хв,д или Хдвт - нитрифицирующие организмы, размерность - масса(ХПК)/м3. Нитрифицирующие организмы ответственны за процессы нитрификации стока. Во многих моделях принимают, что нитрифицирующие организмы окисляют аммоний Змн4 непосредственно в нитрат БN0,4> т- е- чт0 в эт°й группе присутствуют и аммоний- и нитрит-окисляющие бактерии (часто их называют М гозотопав и №1;гоЬайег).[ ...]

Среди почвенных бактерий особую функцию выполняют нитрифицирующие (азотфиксирующие), играющие важнейшую роль в круговороте азота в природе. За год бактериями фиксируется 160-170 млн т азота.[ ...]

Хемоавтотрофные нитрифицирующие бактерии имеют широкое распространение в природе и встречаются как в почве, так и в разных водоемах. Осуществляемые ими процессы могут происходить весьма в крупных масштабах и имеют существенное значение в круговороте азота в природе. Раньше считали, что деятельность нитрификаторов всегда способствует плодородию почвы, поскольку они переводят аммоний в нитраты, которые легко усваиваются растениями, а также повышают растворимость некоторых минералов. Сейчас, однако, взгляды на значение нитрификации несколько изменились. Во-первых, показано, что растения усваивают аммонийный азот и ионы аммония лучше удерживаются в почве, чем нитраты. Во-вто-рых, образование нитратов иногда приводит к нежелательному подкислению среды. В-третьих, нитраты могут восстанавливаться в результате денитрификации до N2, что приводит к обеднению почвы азотом.[ ...]

Чувствительность нитрифицирующих бактерий к органическим веществам характерна только для жидких культур, т. е. при выращивании этих бактерий на жидких питательных средах или при развитии их в водоемах и водотоках. При их развитии в почве подобное явление не наблюдается. Это объясняется тем, что нитрификация тормозится присутствием только воднорастворимого органического вещества, способного проникать в клетки нитрифицирующих бактерий. Таких веществ в почве не бывает в большом количестве.[ ...]

Зная скорость роста нитрифицирующих бактерий /Лнабл,А,расщ можно из выражения (6.3) определить необходимый возраст ила х.д, а из выражения (6.2) - необходимый объем реактора нитрификации.[ ...]

Как и все прочие виды бактерий, нитрифицирующие бактерии особенно чувствительны к резким изменениям температуры (рис. 3.8). Если температура возрастает быстро (за несколько часов), то повышение скорости роста идет медленнее, чем предсказывает расчет. А вот при резком уменьшении температуры активность, напротив, падает сильнее, чем следует из рис. 3.7. Насколько нам известно, в термофильных условиях (при 50-60 °С) нитрификация не происходит.[ ...]

Индекс «А» относится к нитрифицирующим бактериям, индекс «общ» - к общей биомассе.[ ...]

Хв,А,1 = 0 (очень немногие нитрифицирующие бактерии в сточных водах могут достигать концентрации 0,1-1 г/м3).[ ...]

В отличие от большинства нитрифицирующих бактерий, а также некоторых тионовых бактерий, все известные представители водородных бактерий хорошо растут на органических средах в отсутствие молекулярного водорода. При этом органические соединения служат для них энергетическими субстратами и основными источниками углерода.[ ...]

Данные относительно таких нитрифицирующих бактерий, как Nitrospina gracilis и Nitrococcus mobilis, пока весьма ограниченны. По имеющимся описаниям, клетки N. gracilis палочковидные (0,3-0,4 X 2,7-6,5 мкм), но обнаружены и сферические формы. Бактерии неподвижны. Напротив, N. mobilis обладает подвижностью. Клетки его округлые, диаметром около 1,5 мкм, с одним-двумя жгутиками.[ ...]

На рис. 11.4 показаны изменения фракции нитрифицирующих бактерий в двух пилотных установках за год. Эти изменения в основном являются результатом изменения состава подаваемых на обработку стоков и ингибирования нитрифицирующих бактерий.[ ...]

Хемосинтез осуществляется бесцветными бактериями. Процесс хемосинтеза был открыт в 1888 г. знаменитым микробиологом С. Н. Виноградским у нитрифицирующих бактерий. Нитрифицирующая бактерия Nitrosomonas окисляет NH3 в азотистую кислоту.[ ...]

Эти совпадения в развитии аэробных целлюлозоразлагающих и нитрифицирующих бактерий, вероятно, не случайны. В последние годы некоторые ученые (Е. Ф. Березова) занимаются вопросом о взаимоотношениях нитрифицирующих » целлюлозоразлагающих бактерий и имеют данные о способности целлюлозоразлагающих бактерий к денитрификации. В будущем необходимо более детально заняться изучением процессов нитрификации и разложения клетчатки в почвах вырубок.[ ...]

В каждом грамме ила примерно содержится: а) от 100 тыс. до 1 млн. бактерий, восстанавливающих сульфаты; б) от 10 до 100 тыс. тионовых бактерий; в) около 1000 нитрифицирующих бактерий; г) от 10 до 100 тыс. денитрифицирующих бактерий; д) примерно по 100 анаэробных и аэробных разрушителей клетчатки.[ ...]

Процессы окисления аммиака и азотистой кислоты называются нитрификацией, а бактерии - нитрифицирующими или нитрифика-торами. Для нормального протекания процесса нитрификации необходимо определенное значение pH. Первая стадия имеет оптимум pH 8,5, а вторая - 8,3-9,3. Образующиеся при нитрификации азотистая и азотная кислоты могут вызывать разрушение подводных бетонных сооружений.[ ...]

В заключение следует отметить, что результаты опытов по определению токсичности для сапрофитных и нитрифицирующих бактерий какого-либо вещества, входящего в состав промышленных сточных вод, являются исходным материалом при проведении исследований по установлению его ПДК. для биохимической оценки.[ ...]

В работе лесной опытной станции были случаи, когда в гумусе удавалось вызвать нитрификацию прививкой почвы нитрифицирующими бактериями. Лесные растения после такой прививки начинали лучше развиваться, образуя хорошо развитую корневую систему. Конечно, вызвать процесс нитрификации прививкой нитратных бактерий можно не у всякой почвы, а лишь у такой, где условия для этого процесса складываются более или менее благоприятно, а сами бактерии еще отсутствуют.[ ...]

Аммиак находится в природных водах в основном в виде иона аммония- ЫН "; постепенно он окисляется в результате нитрифицирующего действия бактерий в нитритный - N0 , а затем нитратный - N0 ионы. Образуется аммиак главным образом при биохимических процессах, протекающих при участии бактерий и ферментов, обусловливающих гидролитическое расщепление конечного продукта распада белковых веществ - аминокислот. При неполном разложении белковых веществ аммониевая группа остается в составе сложных соединений, находящихся в коллоидном состоянии (альбуминоидный азот). Частично МН -ион может образоваться и при восстановлении нитратов и нитритов в болотистых водах, содержащих большое количество гуматов; эти же ионы могут восстанавливаться сероводородом, закисным железом и др. Содержание аммиака в природных водах обычно не превышает десятых долей миллиграмма (иногда достигает 1 мг) в литре; в редких случаях, при наличии биологических загрязнений, концентрация его выше.[ ...]

С. Н. Виноградский сыграл большую роль в развитии микробиологии. Им были изучены серобактерии (1887), железобактерии (1888) и нитрифицирующие бактерии (1890), исследования которых дали результаты важного научного значения. Эти бактерии обладали способностью развиваться на средах, не содержащих органических веществ, и синтезировать составные части своего тела за счет углерода угольной кислоты. Необходимую энергию эти бактерии получают за счет биохимических процессов, протекающих при окислении азота аммонийных солей в нитриты и нитраты, или за счет окисления двухвалентного железа в трехвалентное. Такой своеобразный процесс синтеза органического вещества из угольной кислоты и воды называется хемосинтезом. Это явилось крупнейшим открытием в области физиологии микроорганизмов.[ ...]

Среди азотсодержащих загрязнений в сточных водах аммиак- один из наиболее опасных. Он является главным источником питания для нитрифицирующих бактерий; увеличивая pH, он способствует жизнедеятельности последних. При биологическом окислении аммиака расходуется наибольшее количество кислорода. Так, по данным , расход кислорода составляет 4,57 кг/кг аммиака, 1,14 кг/кг нитритов и 2,67 кг/кг углеводородов.[ ...]

Это наиболее часто используемый подход, отличительной особенностью которого является следующее: в нем не учитывается ни содержание аммония в стоке, ни концентрация нитрифицирующих бактерий в иле.[ ...]

При аэробном окислении эффект очистки достигает 95-98 . Очистка органически загрязненных сточных вод заканчивается нитрификацией и денитрификацией под воздействием специальных бактерий. Нитрификация заключается в том, что ашюнийные соли, образующиеся в сточных водах, в результате жизнедеятельности нитрифицирующих бактерий окисляются сначала до нитритов, а затем до нитратов.[ ...]

Один из модифицированных способов проектирования основан на таком параметре, как возраст аэробного ила. В данном случае в центре внимания находятся условия, необходимые для развития нитрифицирующих бактерий в реакторе. Однако по-прежнему основными параметрами для проектирования являются содержание органического вещества в сточной воде и общая масса ила.[ ...]

На практике нитрификацию осуществляет очень ограниченная группа автотрофных микроорганизмов. Процесс проходит в два этапа. На первом этапе аммоний окисляется до нитрита под действием бактерий, часто называемых №(;гозотопаз. Затем нитрит окисляется до нитрата под действием другой группы бактерий, часто называемых 1>ШгоЬас1ег. В процессах очистки стоков участвует значительное количество различных нитрифицирующих микроорганизмов. Однако те нитрифицирующие бактерии, которые были идентифицированы с помощью ДНК-зондов, по-видимому, не слишком сильно отличаются по своей активности от известных бактерий Г гозотопаз и 1ЧИ;гоЬа;ег. Таким образом, с инженерной точки зрения нитрификацию можно рассматривать как двухстадийный процесс, с хорошо известной стехиометрией и кинетикой, в котором задействованы две группы бактерий.[ ...]

Концентрацию активного ила можно измерять в кгВВ/м3, кг БВБ/м3 или кг ХПК(Б)/м3. В каждом случае следует указывать размерность. Под БВБ, например, может подразумеваться общее БВБ в иле, либо содержание нитрифицирующих бактерий в иле, измеренное в единицах БВБ, либо содержание денитрифицирующих бактерий и т. д. Однако, если Х2 - это концентрация активной биомассы (живые бактерии), то соответствующая скорость реакции должна иметь в знаменателе ту же размерность.[ ...]

Вероятно, наиболее распространенной проблемой, связанной с очисткой бытовых сточных вод, является чрезмерная аэрация, приводящая к вспуханию активного ила. Когда сооружение работает при расчетной нагрузке, нитрифицирующие бактерии в аэротенке могут превращать азот аммиака в нитраты. Во время последующего отстаивания во вторичном отстойнике нитраты могут служить источником кислорода в анаэробных условиях; при этом выделяется азот, приводящий к всплыванию хлопьев активного ила. Наилучшее решение этой проблемы - увеличение сброса ила, приводящее к сокращению популяций нитрифицирующих бактерий, и уменьшение подачи воздуха для снижения концентрации растворенного кислорода при условии, что эти меры контроля не повлекут за собой уменьшения эффективности снижения ВПК.[ ...]

Микробиологические исследования свидетельствовали о том, что данная технология биоочистки нефтешлама приводила к появлению и дальнейшему увеличению численности аэробных целлюлозоразрушающих микроорганизмов и нитрифицирующих бактерий. Известно, что аэробные целлюлозоразрушающие микроорганизмы и нитрифицирующие бактерии наиболее чувствительны к загрязнению почвы нефтью и длительное время испытывают ее угнетающее воздействие, отвечая на это уменьшением численности микробных клеток (Исмаилов, 1968). Наблюдающийся прирост численности аэробных целлюлозоразрушающих микроорганизмов и нитрифицирующих бактерий является дополнительным свидетельством того, что происходила очистка твердого нефтешлама от нефти и нефтепродуктов.[ ...]

Судьба адсорбированных почвой микробов может быть двоякой: они или выживают и входят в состав постоянного микробного комплекса в качестве деятельных участников микробиальных процессов, или отмирают. Основное количество бактерий, адсорбированных почвой, относится к сапрофитам. После того, как пройдет начальная фаза минерализации органического вещества и начнется процесс нитрификации, в активном почвенном слое интенсивно развиваются прототрофы, главным образом нитрификаторы. Количество нитрифицирующих бактерий на полях фильтрации в 100 раз больше, чем в обычной окультуренной почве.[ ...]

Азотсодержащие вещества (белки, например) подвергаются процессу аммонификации, связанному с образованием аммиака, а далее - солей аммония, доступных в ионной форме для ассимиляции растениями. Однако часть аммиака под воздействием нитрифицирующих бактерий подвергается нитрификации, т. е. окислению сначала до азотистой, далее - азотной кислоты, а далее - при взаимодействии последней с основаниями почвы - происходит образование солей азотной кислоты. В каждом процессе участвует особая группа бактерий. В анаэробных условиях соли азотной кислоты подвергаются денитрификации с образованием свободного азота.[ ...]

Более сложным является круговорот азота (рис. 218), самым большим резервуаром которого служит атмосфера (около 80%). Поскольку большинство растений и животных не может использовать атмосферный азот (N3), то он конвертируется почвенными азот-фиксирущими бактериями, корневой системой бобовых растений и цианобактериями в нитриты (М02), а затем в нитраты (N0,). Этот процесс получил название нитрификации. Растения восстанавливают нитраты, т. е. усваивают азот и синтезируют белки. Круговорот азота далее заключается в том, что почвенные микроорганизмы разрушают животные отходы и остатки мертвых организмов, в результате чего освобождается аммоний, который конвертируется нитрифицирующими бактериями в растворимые соли нитратов, используемые в производстве белков в растениях. В результате поедания растений травоядными животными растительные белки в их организме превращаются в животные.[ ...]

При проведении экспериментов применяли микробиологические методы исследований: определение количества клеток чашечным методом Коха; определение микробной биомассы в жидкой минеральной среде с помощью мембранных фильтров; определение количества нитрифицирующих бактерий и аэробных целлюлозоразрушающих микроорганизмов общепринятыми методами путем высева на соответствующие среды (среда Виноградского и Гетчинсо-на).[ ...]

Длительное воздействие нефти на почву приводит к изменениям микробиологических свойств почвы. Появляются специализированные формы микроорганизмов, способные окислять твердые парафины, газообразные углеводороды, ароматические углеводороды; это - бактерии родов Arthrobacter, Bacillus, Brevibacterium, Nocardia, Pseudomonas, Rhodococcus, спорогенные дрожжи родов Candida, Cryptococcus, Rhodo-torula, Rhodosporidium, SporoboJomyces, Totulopsis, Trichosporon. Нефтяное загрязнение влияет на изменение численности актиномицетов, грибов, причем наименее чувствительны грибы Rhizopus nigricans, Fusarium moniliforme, Aspergillus flavus и A. ustus. Чувствительными к воздействию нефти являются нитрифицирующие бактерии. В присутствии значительных количеств нефти подавляется развитие целлюлозолитических микроорганизмов. Высокую чувствительность к нефти проявляют зеленые и желтозеленые водоросли.[ ...]

Еще в первых работах с нитрификатором Виноградский отметил, что для их роста неблагоприятно присутствие в среде органических веществ, таких, как пептон, глюкоза, мочевина, глицерин и др. Отрицательное действие органических веществ на хемоавтотрофные нитрифицирующие бактерии неоднократно отмечалось и в дальнейшем. Сложилось даже мнение, что эти микроорганизмы вообще не способны использовать экзогенные органические соединения. Поэтому их стали называть «облигатными автотрофами». Однако в последнее время показано, что использовать некоторые органические соединения эти бактерии способны, но возможности их ограничены. Так, отмечено стимулирующее действие на рост Nitro-bacter в присутствии нитрита дрожжевого автолизата, пиридоксина, глутамата и серина, если они в низкой концентрации вносятся в среду. Известно, кроме того, что Nitrobacter медленно, но окисляет формиат. Включение 14С из ацетата, пирувата, сукцината и некоторых аминокислот, преимущественно в белковую фракцию, обнаружено при добавлении этих субстратов к суспензиям клеток Nitrosomonas europaea. Ограниченная ассимиляция глюкозы, пирувата, глутамата и аланина установлена для Nitrosocy-stis oceanus. Есть данные об использовании 14С-ацетата Nitrosolobus multiformis.[ ...]

Модель применяли к системе из четырех последовательно расположенных реакторов идеального перемешивания, обрабатывающих коммунальные стоки . При этом предполагалось, что биопленка толщиной 3 мм равномерно распределена по всем четырем реакторам. В первом реакторе нитрификации не происходит, поскольку нитрифицирующие бактерии вытесняются гетеротрофными организмами. В последующих реакторах нитрифицирующие бактерии могут конкурировать с гетеротрофными организмами, и в этих реакторах нитрификация происходит с невысокими скоростями, которые можно рассчитать. Расчетное пространственное распределение гетеротрофных и нитрифицирующих бактерий представлено на рис. 11.1. Обозначены пространственные скорости реакции.[ ...]

Выщелоченные черноземы занимают 14% общей площади Республики Башкортостан. Богатство почв органическими веществами в сочетании с механическим составом обеспечивают высокую, максимальную гигроскопичность. Отмечается сравнительно высокое содержание кремнезема и серы и несколько пониженное - кальция, натрия, магния. Отношение С;Ы указывает на обогащенность гумуса азотом . Выщелоченные черноземы недостаточно обеспечены подвижными формами марганца, кобальта, молибдена, цинка и меди. Они отличаются высокой микробиологической активностью, в составе их преобладают спорообразуюшие бактерии, участвующие в процессах минерализации органических веществ. Здесь также широко распространены нитрифицирующее и а?отфлксирующие бактерии .

По типу питания все известные живые организмы делятся на два больших вида: гетеро- и автотрофы. Отличительной особенностью последних является их способность к самостоятельному построению новых элементов из углекислоты и других

Источники энергии, поддерживающие их жизнедеятельность, обусловливают их деление на фотоафтотрофы (источник - свет) и хемоавтотрофы (источник - минеральные вещества). А в зависимости от названия субстрата, который окисляют хемоавтортофы, они разделяются на водородные и нитрифицирующие бактерии, а также на серо- и железобактерии.

Данная статья будет посвящена наиболее распространенной среди них группе - нитрофицирующим бактериям.

История открытия

Еще в середине 19 века немецкими учеными было доказано, что процесс нитрификации является биологическим. Опытным путем они показали, что при добавлении к канализационным водам хлороформа останавливалось окисление аммиака. Но объяснить, почему так происходит, они не смогли.

Это удалось сделать несколькими годами позже русскому ученому Виноградскому. Он выделил две группы бактерий, которые поэтапно брали участие в процессе нитрификации. Так, одна группа обеспечивала окисление аммония до а уже вторая группа бактерий отвечала за ее превращение в азотную. Все задействованные в этом процессе нитрифицирующие бактерии являются грамотрицательными.

Особенности процесса окисления

Процесс образования нитритов путем окисления аммония имеет несколько этапов, в ходе которых образуются азотсодержащие соединения с различной степенью окисленности группы NH.

Первым продуктом окисления аммония является гидроксиламин. Вероятней всего, он образуется из-за включения молекулярного кислорода в группу NH 4 , хотя окончательно этот процесс не доказан и остается дискутабельным.

Далее гидроксиламин превращается в нитрит. Предположительно, процесс осуществляется через образование NOH (гипонитрита) с выделением закиси азота. В этом случае ученые считают продукцию всего лишь побочным продуктом синтеза, из-за восстановления нитрита.

Кроме продукции химических элементов, в ходе денитрофикации выделяется большое количество энергии. Подобно происходящему у гетеротрофных аэробных организмов, в данном случае синтез молекул АТФ связан с окислительно-восстановительными процессами, в результате которых на кислород передаются электроны.

При окислении нитрита большую роль играет процесс обратного транспорта электронов. Включение его электронов в цепь происходит непосредственно в цитохромах (С-типа и/или А-типа), а для этого требуется достаточно большие затраты энергии. Как результат, хемоавтотрофные нитрифицирующие бактерии полностью обеспечены нужным запасом энергии, которая используется для процессов построения и усвоения углекислоты.

Виды нитрифицирующих бактерий

В первой фазе нитрификации берут участие четыре рода нитробактерий:

  • нитросомонас;
  • нитроцистис;
  • нитросолюбус;
  • нитрососпира.

Кстати, на предложенном изображении вы можете видеть нитрифицирующие бактерии (фото под микроскопом).

Экспериментальным путем среди них достаточно сложно, а зачастую и вовсе невозможно выделить одну из культур, поэтому их рассмотрение преимущественно комплексное. Все из перечисленных микроорганизмов имеют размер до 2-2,5 мкм и преимущественно овальную или округлую форму (за исключением нитроспиры, которые имеют вид палочки). Они способны к бинарному делению и направленному движению за счет жгутиков.

Во второй фазе нитрификации принимают участие:

  • род нитробактер;
  • род нитроспина;
  • нитрококус.

Наиболее изучен штамм бактерий рода нитрбактер, имеющий название в честь своего первооткрывателя Виноградского. Эти бактерии нитрифицирующие имеют грушевидную форму клеток, размножаются почкованием, с образованием подвижной (за счет жгутика) дочерней клетки.

Строение бактерий

Исследованные нитрифицируюшие бактерии имеют схожее клеточное строение с другими грамотрицательными микроорганизмами. Некоторые из них имеют достаточно развитую систему внутренних мембран, образующих стопку в центре клетки, тогда как у других они располагаются больше по периферии или образуют структуру в виде чаши, состоящую из нескольких листков. По всей видимости, именно с этими образованиями связаны ферменты, которые участвуют в процессе окисления нитрификаторами специфических субстратов.

нитрифицирующих бактерий

Нитробактерии относятся к облигатным автотрофам, поскольку не способны использовать экзогенные Однако экспериментальным путем все же показана способность некоторых штаммов нитрифицирующих бактерий использовать некоторые органические соединения.

Было выявлено, что субстрат, содержащий дрожжевые автолизаты, серин и глутамат в низких концентрациях, стимулирующим образом воздействовал на рост нитробактерий. Это происходит как при наличии нитрита, так и при его отсутствии в хотя процесс протекает гораздо медленнее. И наоборот, при наличии нитрита процесс окисления ацетата подавляется, но значительно увеличивается включение его углерода в белок, различные аминокислоты и другие клеточные компоненты.

В результате множественных экспериментов были получены данные о том, что бактерии нитрифицирующие все же могут переключаться на гетеротрофное питание, но насколько продуктивно и как долго они могут существовать в таких условиях, еще предстоит выяснить. Пока данные достаточно противоречивы, чтобы делать окончательные умозаключения по этому поводу.

Среда обитания и значение нитрифицирующих бактерий

Нитрифицирующие бактерии относятся к хемоавтотрофам и имеют широкое распространение в природе. Они встречаются повсеместно: в почве, различных субстратах, а также водоемах. Процесс их жизнедеятельности вносит большой вклад в общий и в действительности может достигать огромных масштабов.

Например, такой микроорганизм, как нитроцистис океанус, выделенный из Атлантического океана, относится к облигатным галофилам. Он может существовать только в морской воде или субстратах, содержащих ее. Для таких микроорганизмов важна не только среда обитания, но и такие константы, как рН и температура.

Все известные нитрифицирующие бактерии относят к облигатным аэробам. Для того чтобы окислить аммоний в азотистую кислоту, а азотистую кислоту в азотную, им нужен кислород.

Условия обитания

Еще одним важным моментом, который выявили ученые, стало то, что место, где живут нитрифицирующие бактерии, не должно содержать органических веществ. Была выдвинута теория, что эти микроорганизмы в принципе не могут использовать органические соединения из вне. Их даже назвали облигатными автотрофами.

В последующем неоднократно было доказано пагубное влияние глюкозы, мочевины, пептона, глицерина и другой органики на бактерии нитрифицирующие, но эксперименты не останавливаются.

Значение нитрифицирующих бактерий для почвы

До недавнего времени считалось, что нитрификаторы благоприятно влияют на почву, увеличивая ее плодородность путем расщепления аммония до нитратов. Последние не только хорошо абсорбируются растениями, но и сами по себе повышают растворимость некоторых минеральных веществ.

Однако, в последние годы научные взгляды претерпевают изменения. Выявлено отрицательное действие описываемых микроорганизмов на плодородность почвы. Бактерии нитрифицирующие, образуя нитраты, подкисляют среду, что не всегда является положительным моментом, а также в большей степени провоцируют насыщение почвой ионов аммония, чем нитратов. Более того, нитраты имеют способность восстанавливаться до N 2 (в процессе денитрифакации), что в свою очередь ведет к обеднению почвы азотом.

В чем опасность нитрифицирующих бактерий?

Некоторые штаммы нитробактерий в присутствии органического субстрата могут окислять аммоний, образовывая гидроксиламин, а в последующем нитриты и нитраты. Также в результате таких реакций могут возникать гидроксамовые кислоты. Более того, ряд бактерий осуществляет процесс нитрификации различных соединений, в состав которых входит азот (оксимы, амины, амиды, гидроксаматы и другие нитросоединения).

Масштабы гетеротрофной нитрификации при определенных условиях могут быть не только огромными, но и весьма пагубными. Опасность заключается в том, что в ходе таких превращений происходит образование токсических веществ, мутагенов и канцерогенов. Поэтому ученые пристально работают над изучением данной темы.

Биологический фильтр, который всегда под рукой

Нитрифицирующие бактерии - это не абстрактное понятие, а весьма распространенная форма жизни. Более того, они часто используются человеком.

Например, в состав биологических фильтров для аквариумов входят именно эти бактерии. Данный вид очистки менее затратный и не такой трудоемкий, как механическая очистка, но в тоже время требует соблюдения определенных условий, чтобы обеспечить рост и жизнедеятельность нитрифицирующим бактериям.

Наиболее благоприятным микроклиматом для них является температура окружающей среды (в данном случае воды) порядка 25-26 градусов Цельсия, постоянный приток кислорода и наличие водных растений.

Нитрифицирующие бактерии в сельском хозяйстве

Для того чтобы повысить урожайность, аграрии используют различные удобрения, содержащие нитрифицирующие бактерии.

Питание почвы в таком случае обеспечивается нитробактериями и азотобактериями. Эти бактерии извлекают из почвы и воды необходимые вещества, которые в процессе окисления образуют достаточно большое количество энергии. Это так называемый процесс хемосинтеза, когда полученная энергия идет на образование сложных молекул органического происхождения из углекислого газа и воды.

Для этих микроорганизмов не обязательно поступление питательных веществ с окружающей их среды - они могут продуцировать их самостоятельно. Так, если зеленым растениями, которые также являются автотрофами, необходим солнечный свет, то для нитрифицирующих бактерий он не обязателен.

Самоочистка почвы

Почва - это идеальный субстрат для роста и размножения не только растений, но и множества живых организмов. Поэтому крайне важно ее нормальное состояние и сбалансированный состав.

Следует помнить, что биологическую очистку почвы обеспечивают в том числе и нитрифицирующие бактерии. Они, находясь в почве, водоемах или перегное, превращают аммиак, который выделяют другие микроорганизмы и отходные органические материалы, в нитраты (если быть более точными, то в соли азотной кислоты). Весь процесс состоит из двух этапов:

  1. Окисление аммиака до нитрита.
  2. Окисление нитрита до нитрата.

При этом каждый этап обеспечивается отдельными видами микроорганизмов.

Так называемый замкнутый круг

Кругооборот энергии и поддержание жизни на Земле возможно благодаря соблюдению определенных закономерностей существования всего живого. На первый взгляд трудно понять, о чем идет речь, но на самом деле все достаточно просто.

Давайте представим следующую картинку из школьного учебника:

  1. Неорганические вещества перерабатываются микроорганизмами и тем самым создают благоприятные условия в почве для роста и питания растений.
  2. Они, в свою очередь, являются незаменимым источником энергии для большинства травоядных животных.
  3. Следующей цепочкой этого жизненного звена являются хищники, энергией для которых являются, соответственно, их травоядные собратья.
  4. Люди, как известно, относятся к высшим хищникам, а это значит, что мы можем получать энергию как от растительного мира, так и от животного.
  5. А уже наши собственные остатки жизнедеятельности, а также тех самых растений и животных, служат питательным субстратом для микроорганизмов.

Таким образом, получается замкнутый круг, непрерывно функционирующий и обеспечивающий жизнь всего живого на Земле. Зная эти принципы, не сложно представить, насколько многогранна и на самом деле безгранична сила природы и всего живого.

Заключение

В данной статье мы попытались дать ответ на вопрос, что такое нитрифицирующие бактерии в биологии. Как видите, несмотря на неопровержимые доказательства жизнедеятельности, функционирования и влияния этих микроорганизмов, существует еще множество спорных вопросов, требующих дальнейших экспериментальных исследований.

Нитрифицирующие бактерии относят к хемотрофам. Источником энергии для них служат различные минеральные вещества. Несмотря на свои микроскопические размеры, эти живые организмы оказывают огромное влияние на окружающий их мир.

Как известно, хемотрофы не могут усваивать органические соединения, которые находятся в субстрате (почвенном или водном). Они, наоборот, продуцируют строительный материал для создания живой и функционирующей клетки.