Краткая история методов изобретательства. Правильная организация изобретательского труда

Раздел 2.3 Технологии изобретательства (продолжение)

Серия статей: Введение в ТРИЗ для аналитиков.

Рады приветствовать всех тех, у кого хватает терпения и желания отслеживать каждую следующую статью антологии о ТРИЗ!

Краткое превью

В мы подвели временные итоги второй части на том, что начали рассуждать о различных подходах к организации процесса изобретательства.

В этой статье, без лишних прелюдий и «шаманских» танцев с клавиатурой, мы рассмотрим окружение, эволюционные предпосылки появления ТРИЗ и её «соперников», обусловленные факторами развития человеческого мышления в области технологий и инноваций.

Подходы к процессу «изобретательства»

Процесс творчества, с момента своего проявления в человеческой деятельности, постоянно привлекал к себе особое внимание. Сначала, как нечто необыкновенное и заповедное. Затем, как чарующее и привлекательное действо. Потом, как элемент пристального рассмотрения и изучения.

Человеческая натура, в сути своей, является мятежной субстанцией. Она стремится «раскрыть», «пощупать», «разузнать» и, в конечном итоге, использовать себе во благо любой окружающий её предмет и явление. В этом, пожалуй, и есть смысл любого прогресса. Каждый раз, когда человек «заучивает» тот базис, на котором он находится, ему становится на нём тесно и не комфортно. После этого, используя «забетонированный» прочный фундамент (вот тут становится важно, чтобы этот фундамент был по-настоящему прочным и основательным) специалист начинает новые искания и исследования, с целью переосмысления существующих артефактов и освоения нового.

Таким образом, становится понятно, что каждая следующая теория появляется на основе/благодаря предыдущим и только в тот момент, когда есть группа умов способных оценить прогнозируемые результаты от её использования.

Исторически, складывались 3 основных группы методов, описывающих процесс творчества.

Первая группа – «Бабочки в моей голове»

Первая группа подходов описывает творчество, как абсолютно стохастичный процесс, который практически не поддается управлению и «происходит» только в те моменты, когда на человека «спускается» озарение, заряд энергии, который приводит бабочек в броуновское движение.

Сторонников этого подход, до последнего момента, (середина прошлого века) было большинство. Объяснить это можно тем, что творчество «исторически» считалось уделом избранных, которым повезло «вытянуть» счастливый билетик. Подтверждалось это тем, что эти избранные (вполне уместно будет в дальнейшем приводить слово «гении») отличались от окружающих по многим факторам (поведение, внешность и т.д.). Но, в момент рассмотрения явления гениальности стало ясно, что каждый гений может быть классифицирован по ряду признаков. Часть из этих характеристик является врожденными, а часть приобретенными. Какие из них отвечают за пресловутую гениальность не вполне понятно, так что, возможно, в ближайшее время появятся теории, которые обоснуют технологию введения личности в состояние гениальности (за большие заслуги) и обратно (соответственное, за провинности) :) .

Вторая группа подходов опирается на логический подход к построению цельной модели проблемы и ее окружения, с итогами, в виде систематических выявлений всех возможных вариантов проблем. В этой группе методов проявляется первый «бунтаризм» человеческой натуры и нежелание идти по укатанной тропе, сплавляться по течению.

Третья группа – «Творчество по полочкам»

В третьей группе постулируются принципы системности, которые основаны на том, что первоначально следует разобраться в сути проблемы, выявить элементы и свойства, которые являются результатами противоречия и устранить его.

Из-за кажущейся сложности, именно третье направление оставалось самым неразвитым до последнего времени. Есть множество факторов, благодаря которым это направление получило столь бурное развитие в последнее время. ТРИЗ является одним из таких факторов.

Работа по анализу патентного «поля», которую проделал Генрих Саулович Альтшуллер, явилась краеугольным камнем развития и популярности предложенных им алгоритмов, за счет четкого научного обоснования и абсолютно прозрачной и доступной логичности его идей.

Вторая группа – «Немного логики»

В начале XX века немногих пытливых умов стала не устраивать повсеместно распространенная, подавляющебытующая первая группа методов, да и, наверное, человеческое сознание созрело для того, чтобы «принять» на себя ответственность за то, что человеку самому по себе подвластно управлять творчеством и быть хозяином своих свершений.

В преддверии ТРИЗ появились методы, актуальность которых подтверждена и на сегодняшний день. Они представляют собой «переходные» стадии 3-ех вышерассмотренных групп методов. Практически все из них получили свое применения в бизнесе, преподавательстве и т.д.

Метод фокального объекта (МФО)

Сформулирован в 20-ых годах XX века Ф. Кунце и в дальнейшем (50-ые) усовершенствован Ч. Вайтингом.

Его суть состоит в том, что объект рассмотрения фиксируется в фокусе внимания, после чего он сопоставляется со случайно выбранным объектом реального мира (животное, бытовой предмет и т.д.). В дальнейшем, соединение свойств зафиксированных объектов может (ключевое слово) привести к оригинальным идеям для изменения первоначально исследуемого объекта.

Brainstorm (Метод мозгового штурма, ММШ)

Сформулирован в 40-ых годах XX века А. Осборном.

Пожалуй, один из самых распространенных методов генерации идей на сегодняшний день. Суть метода заключается в спонтанном и не критикуемом процессе генерации идей всеми участниками данного метода, с последующим подробным анализом и выделении наиболее оптимальных/приемлемых кандидатов на «победу». Метод получил довольно широкое распространение в бизнес среде за счет быстрого поиска возможного (опять же, ключевое слово) решения проблемы. Ориентирован, в отличие от предыдущего, на командную работу.

Синектика (С)

Сформулирован в 50-ых годах XX века У. Гордоном.

Метод «Синектика» является качественным и более социально направленным шагом вперед (или в бок) по сравнению с методом Brainstorm. Он не очень популярен в нашей стране за счет сложного модерирования процесса генерации идей. Описанная в нем технология работы с командой слишком сложна. Она требует от организаторов данного метода развития членов команды с их последующим тесным взаимодействием. Критика (в отличии от метода мозгового штурма), на этапе генерации, поощряется, но критика должна быть сугубо конструктивной и направленной только в адрес конкретной идеи, а не дай бог, в адрес участника процесса. Возможная психологическая закрепощенность критикуемых субъектов должна «сниматься» модераторами за счет мотивирующей психологической работы с ними.

Метод морфологического анализа (ММА)

Сформулирован в 60-70-ых годах XX века Ф. Цвикки.

В основе метода находятся идеи «всеобщего синтеза», предложенные Беренсом. Строго говоря, данный метод сложно считать простым методом генерации идей, в отличие от ранее рассмотренных. Его затруднительно использовать без компьютерной поддержки процесса «изобретательства». Ядром метода является матрица параметров, сочетание вариантов которых должно приводить к оптимальному варианту решения. Результативность метода зависит от того насколько правильно и корректно выбраны параметры и их варианты. Метод сложный, но он не направлен на командную работу и ему можно обучить.

Латеральное мышление (ЛМ)

Сформулирован в 60-70-ых годах XX века Э. Де Боно.

Латеральное мышление является методом, который представляет собой систему развития и «побуждения» центрального объекта любого из нижерассмотренных методов, речь, конечно же, о мыслителе. Направления поиска идей в ЛМ, стимулируют интуицию, позволяют «обозревать» решение и все его аспекты, увидеть подходы, приводящие к достижению результата. Но, метод латерального мышления всё также остается «пассивным» методом, который не предоставляет изобретателю определенного инструмента решения задач, а лишь «уповает» на удачное стечение многих обстоятельств, но не предполагает попытки управлять ими. ЛМ, по скромному мнению является более комплексным и персононаправленным совершенствованием ММШ.

Нейролингвистическое программирование (НЛП)

Проводя параллель с предыдущим методом (ЛМ) уместно будет сказать о том, что метод нейролингвистического программирования является «спиральным» продолжением метода «С». НЛП предоставляет богатый инструментарий (О, наконец-то!) по работе с индивидуумом, в результате применения которого возможно решение довольно сложных задач (освоение иностранных языков, преодоление отрицательных черт характера и т.д.). Обширная классификация подходов к преодолению проблем позволяет считать данный метод научным. Объем переработанного материала, послуживший фундаментом для НЛП, колоссален. Но данный метод является более (наверное, слово «совсем» точнее описывает его содержание) психологическинаправленным, чем технически. Многое в НЛП зависит от личности конкретного изобретателя.

Итоги

Предложенный обзор методов генерации идей составлен авторами, преследующими две основные цели.

Первая цель, вводно-комплексная, включает в себя следующие пункты:

  • Cоставить/обновить у интересующегося коллеги представление о разнообразии методов, существующих на данный момент для процесса генерации идей
  • Выработать представление о предпосылках появления каждого метода
  • Оценить назначение каждого метода, которое позволит представить объективную картину преимуществ и недостатков, которыми обладает каждый конкретный инструмент

Понимая с какой целью создавался метод становится возможным его целевое и результативное использование.

Вторая цель, подготавливающе-катализаторная:

  • Продемонстрировать шаги, предпосылки, окружение ситуации, которая бытовала в активности генерации идей
  • Выявить очевидные направления развития данной активности, которые были необходимы для решения поставленных перед инженерно-аналитическим сообществом задач
  • Подготовить читателя к ТРИЗ:)

Начиная с метода морфологического анализа начинает прослеживаться явное смещение тренда создаваемых методов с сугубо «социально-гуманитарного» направления в область более высокоинтеллектуальных, фундаментальных и логическиобоснованных методов, но, при этом, качественного «прорыва», перехода на другой тип используемых технологий, не происходит. Явным минусом всех приведенных методов является усиление только «человеческой» составляющей.

«Пользователям» не предлагается универсальный технический инструмент, который был бы свободен от множества, сопряженных с личностью «мыслителя», факторов. Не было инструментально-системного подхода к рассматриваемой задаче в целом, и к противоречию, лежащему в её основе, в частности. По настоящему системными методами их считать неправильно по причине очевидной односторонности.

Классическая ТРИЗ

Вот именно в таком методологическом «поле» и стало возможным появление теории решения изобретательских задач. Именно, так:) . Многие теории, вследствие того, что «мир» был к ним не готов, по причине их «опережающих» действительность идей развития (гениальности, если хотите), отвергались или откладывались на дальнюю полку. Ситуация с появлением ТРИЗ, была немного иной. Инженерам было необходимо что-то, позволяющее решать им, поставленные временем, руководством, государственным устройством и т.д. задачи.

В таких условиях профессиональное сообщество созрело для того, чтобы быть готовыми воспринять инструмент, который предлагал решение практически любой проблемы, представленной перед изобретателем в нужной форме.

Труд, созданный Генрихом Сауловичем Альтшуллером – это титаническая работа по анализу библиотеки патентов (с последующим синтезом полученной информации), существующих в СССР открытий и изобретений, на предмет кластеризации и классификации направлений мысли, представленной в них. Количество проанализированных патентов было колоссальным. По результатам своей работы Генрих Саулович смог сделать качественные выводы, опирающиеся на количественное обоснование, выявить закономерности технологии открытий и представить их в виде своей теории. Безусловно, Альтшуллер, не был тем, кому первому в голову пришла мысль о том, что эффективность большинства изобретений человечества низкоэффективна. Сам Альтшуллер в своей деятельности ссылался на К. Маркса и Ф. Энгельса («заигрывание» с временем и «режимом» здесь не при чем, так как именно из-за критики режима Генрих Саулович, в последствии, и был «закрыт» в научном «ящике»), которые в своих работах определили признаки и фазы эволюции изобретений, технологий, труда человека/работника. В основе его примеров лежат следующие идеи:

  1. Изобретение – преодоление противоречия
  2. Противоречие – это следствие неравномерного развития отдельных частей технических систем

Вот на такой интригующей ноте мы и закончим данную статью.

Не скучайте, развивайтесь, совершенствуйтесь, до скорой встречи!

Метод проб и ошибок

Один из распространенных и древнейших методов изобретательства и поиска новых технических решений - метод проб и ошибок. Этот метод случайного поиска вариантов не содержит никаких правил генерирования и оценки идей. Ключом к решению задачи должна быть любая идея, пришедшая в голову разработчика по счастливой случайности или интуитивно. В случае если в результате оценки этой идеи она признается неудачной, то взамен ее выдвигается очередная новая идея, и всœе многократно повторяется, пока не будет найдено какое-то приемлемое решение. Очевидно, что путь к идеальному техническому решению данным методом - долог, или, как сейчас говорят, трудоемок и малопроизводителœен.

Тем не менее, даже крупные изобретатели и ученые успешно пользовались этим методом и добивались больших успехов. Одним из выдающихся пользователœей метода проб и ошибок был известный американский изобретатель и предприниматель Томас Эдисон, кстати говоря, являвшийся почетным иностранным членом Академии наук СССР. Бесконечный рой идей постоянно вился в голове этого человека. В Соединœенных Штатах Америки Эдисон получил 1098 патентов и около 3000 еще в 34 странах мира.

Метод проб и ошибок целœесообразно применять при решении задач с небольшим (не более 20) количеством вариантов (переборов), однако при решении задач большой сложности он становится неэффективным.

Метод и списки контрольных вопросов

Впервые использование метода контрольных вопросов для поиска новых идей и наилучших конструкторско-технологических решений было предложено и осуществлено руководителœем изобретательского бюро в Кембридже (Англия) в 1955 ᴦ. Тимом Эйлоартом. Дальнейшее развитие этого метода нашло отражение в оригинальном списке контрольных вопросов А. Осборна, в правилах М.Тринга и Э.Лейтуэйта͵ в перечне вопросов и советов Д.Пойа и других авторов. Метод контрольных вопросов основан на применении так называемых ʼʼсписков контрольных вопросовʼʼ, представляющих собой эвристики, в состав которых включены наводящие вопросы, указания-советы, подсказки, частичные разъяснения.

Список контрольных вопросов для изобретателœей и разработчиков новых технических объектов содержит в себе следующие позиции:

1. Перечислите всœе качества и определœения предполагаемого изобретения, укажите, в какую сторону их предполагается изменить.

2. Четко сформулируйте задачи создания объекта͵ выделив среди них главные и второстепенные.

3. Перечислите основные принципы и недостатки известных решений рассматриваемой задачи, сформулируйте свои предложения по их устранению.

4. Выскажите и запишите различные, пусть даже фантастические, аналогии (химические, биологические, экономические и т. п.).

5. Постройте какие-то модели объекта: математические, гидравлические, механические, электронные и т. п., поскольку модели наиболее точно выражают идеи, нежели аналогии.

6. Попробуйте применить для усовершенствования объекта другие виды материалов, энергии, другие физические, химические и иные эффекты.

7. Попытайтесь установить зависимости, взаимные связи и логические совпадения.

8. Узнайте мнение по разрешению главной задачи у людей, совершенно не осведомленных в данной проблеме.

9. Устройте свободное групповое обсуждение проблемы, выслушивая любые идеи без критики.

10. Попробуйте использовать ʼʼнациональныеʼʼ подходы к решению задач: хитрое шотландское, расточительное американское, сложное китайское, всœеобъемлющее немецкое и т. п.

11. Постарайтесь быть всœегда с проблемой, не расставаясь с ней не только на работе, но и в поездке, на прогулке, в игре.

12. Надо постараться погрузиться в обстановку, стимулирующую творчество: побывать в техническом музее, в антикварном магазинœе, просмотреть журналы, комиксы.

13. Составьте сопоставительные таблицы типов материалов, геометрических параметров и других величин объекта и его элементов, а также их цен для разных вариантов решения проблемы.

14. Определите идеальные конечные результаты по разработке объекта.

15. Попробуйте видоизменить решение поставленной проблемы во времени, а также за счёт изменения свойств и параметров объекта.

16. Попытайтесь в воображении ʼʼзалезтьʼʼ внутрь объекта и рассмотреть его изнутри.

17. Выявите и исключите из дальнейшего обсуждения альтернативные варианты решения проблемы, уводящие в сторону от траектории поиска наилучшего решения.

18. Попытайтесь выявить, кого и почему интересует решаемая проблема.

19. Выявите, кто первым и когда придумал аналогичный технический объект, были ли ложные попытки его усовершенствования.

20. Кто еще решал аналогичную проблему и чего он добился?

21. Выявите пограничные условия изготовления и применения объекта.

Метод морфологического анализа

Термин ʼʼморфологияʼʼ (учение о форме) впервые использовал Иоганн Вольфганг Гете - немецкий мыслитель, естествоиспытатель и всœемирно известный писатель, поэт. Он был основоположником морфологии организмов - учения о форме и строении растений и животных.

Автором метода морфологического анализа является швейцарский астроном Ф. Цвикки, который не дал развернутого определœения этому понятию, а лишь указал, что данный метод позволяет находить всœе варианты решения проблемы. Рассмотрим, как и в какой последовательности осуществляется поиск новых технических решений по правилам, предложенным Ф. Цвикки. При этом всœе этапы морфологического анализа будем иллюстрировать примерами поиска технических решений создания нового автомобиля-вездехода.

На первом этапе дается точная и полная формулировка поставленной задачи. В частности, выдвигаются следующие требования потребителя к автомобилю-вездеходу:

Он должен передвигаться по сложной пересеченной местности (по твердому и сыпучему грунту, по воде, льду) в любое время года и суток;

Он должен перевозить грузы и людей в комфортных условиях, а значит - должен быть защищен от внешней среды и оборудован соответствующими средствами жизнеобеспечения;

Он должен быть управляемым и обеспечить передвижение в любых направлениях со скоростями и ускорениями в заранее заданных диапазонах.

На втором этапе формулируются основные морфологические признаки технического объекта (функциональные узлы, параметры), исходя из закономерностей его строения.

В рассматриваемом примере за морфологические признаки автомобиля-вездехода бывают приняты:

1. Способы перемещения вездехода по земной поверхности.

2.Принципы осуществления движения.

3.Виды преобразователœей энергии в движение.

4.Типы источников энергии.

5.Виды систем управления вездеходом.

6.Типы систем жизнеобеспечения.

7. Варианты систем ориентации.

На третьем этапе производится независимое рассмотрение всœех морфологических признаков; для каждого из них намечаются всœе мыслимо возможные варианты решения проблемы.

Четвертый этап: составление многомерной матрицы, в которой каждому морфологическому признаку соответствует графа возможных вариантов решения задачи.

Пятый этап: анализ и оценка всœех без исключения вариантов решения задачи с позиций наилучшего выполнения техническим объектом сформулированных для него потребительских целœей и технических функций. При этом большинство из обсуждаемых вариантов оказываются неперспективными и неприемлемыми по тем или иным причинам и исключаются из дальнейшего рассмотрения.

На последнем, 6-м этапе производится выбор одного или нескольких синтезированных вариантов решения задачи, которые могут оказаться перспективными для практической реализации.

Метод функционально-стоимостного анализа

В инженерной и изобретательской практике технически развитых стран мира, начиная с 60-х ᴦ. XIX в., получил распространение новый подход к снижению стоимости и к повышению качества технических изделий. Этот подход получил название функционально-стоимостного анализа (ФСА).

Используются два подхода к снижению себестоимости изготовления и эксплуатации технических изделий: предметный и функциональный. При традиционном предметном подходе разработчик рассматривает объект как реальную целостную конструкцию. При функциональном же подходе разработчик полностью абстрагируется от реальной конструкции объекта и сосредотачивает внимание на ее функциях. Такой подход изменяет и направление поиска путей снижения себестоимости изготовления и эксплуатации технического объекта. Четко определив и сформулировав всœе функции анализируемого объекта и их количественные характеристики, разработчик выясняет: насколько важны и необходимы те или иные функции, которыми обладает прототип? Можно ли избавиться от некоторых ʼʼизлишнихʼʼ функций без ущерба для общей потребительской ценности объекта? Какие характеристики и параметры элементов объекта можно изменить для снижения себестоимости?

Процесс проведения ФСА состоит из следующих поэтапно выполняемых видов работ:

1. Подготовительный этап, на котором производится выбор технического объекта͵ определяются цели и задачи ФСА, формируется группа разработчиков проекта создания нового или усовершенствования существующего объекта.

2. Информационно-аналитическая работа. На этом этапе осуществляется сбор и анализ информации по конструкторско-технологическим решениям прототипа то, по условиям его работы, по конструктивным и эксплуатационным недостаткам, по затратам на его изготовление и обслуживание. Составляется список базовых показателœей и требований к техническому объекту, определяются критерии его развития. Разрабатывается конструктивная функциональная структура то. Производится классификация и анализ функций элементов то, определяются и попарно сравниваются стоимости функций, выявляются функциональные зоны наибольшего сосредоточения затрат. На базе проведенного анализа формулируется задача поиска более рациональных, оптимальных (по себестоимости) конструкторско-технологических решений.

3. Поисково-исследовательскиuй этап. Это один из творческих и доминирующих этапов работы, на который затрачивается до 50% времени от суммарного времени на выполнение проекта. Здесь исследуется каждая функция то на предмет: нужна ли она, нельзя ли переложить эту функцию на другой элемент то, можно ли объединить функции, можно ли упростить, удешевить или стандартизировать те или иные элементы то. На этом этапе основным инструментарием поисково-исследовательской деятельности разработчиков являются типовые приемы разрешения технических противоречий, эвристические методы и приемы поиска новых идей и рациональных конструкторско-технологических решений. Финалом этого этапа является оформление результатов в виде технического предложения и эскизного проекта.

4. Разработка и внедрение результатов ФСА. На этом этапе производится (в ряде случаев с привлечением опытных экспертов) отбор наиболее эффективных и перспективных вариантов конструирования технических объектов, определœение технологичности и экономичности их изготовления, формируются рекомендации по их внедрению.

«...Пусть человек пользуется прошедшими веками, как материалом, на котором возрастает будущее...».

Потребность в изобретательстве была всегда у человечества.

Эта книга о том, как сделать процесс изобретательства более простым, как развить творческое мышление.

Истоки изобретательства уходят своими корнями в глубокую древность. По-видимому, начало изобретательства положил процесс очеловечивания наших далеких предков. Для добычи пищи и защиты первые «изобретатели» пользовались объектами, «изготовленными» природой: камни, палки и т.д. Поэтому первые «изобретения» были на применение известных в природе «устройств», веществ и способов по новому назначению. Изобретательность в те времена сводилась к наблюдательности и удачливости нашего дальнего предка.

Так, судоходство, скорее всего, началось с момента, когда человек заметил, что бревно, находящееся в воде, может поддерживать его на плаву. А судостроение ведёт начало с изобретения первого плота.

"Считают, что история судостроения и судоходства насчитывает 6000 лет! При этом говорят об использовании человеком плота, имеют в виду уже плот, скрепленный из нескольких бревен. Применение же необработанных стволов, с сучьями и ветками, в качестве плавучего средства для поиска пищи или преодоления пространства началось, по-видимому, значительно раньше" .

Первые попытки создать методику творчества, и в частности технического творчества, предпринимались еще в древней Греции.

Создатель первой логической системы в античный период Демокрит из Абдера (ок. 460 - 370 гг. до н. э.) строил ее преимущественно как логику индукции, особое внимание, обращая на аналогию. Правильность рассуждений он связывал с их свойствами: "Видно, что рассуждение правильно, из того, что оно всегда открывает (нам) и оказывает содействие относительно будущего" .

Аристотель (384 - 322 гг. до н. э.) видел цель науки в полном определении предмета. Он различал диалектические и аподиктические виды познания. Первые - "мнение", получаемое из опыта, вторые - достоверное знание. Опыт, по Аристотелю, не является последней инстанцией достоверности знания, ибо высшие принципы знания созерцаются умом непосредственно. Полное определение предмета достигается только путем соединения дедукции и индукции:

  1. знание о каждом отдельном свойстве должно быть приобретено из опыта;
  2. убеждение в том, что это свойство - существенное, должно быть доказано умозаключением особой логической формы - силлогизмом.

Основной принцип силлогизма выражает связь между родом, видом и единичной вещью, Аристотель понимал, как отражение связи следствия, причины и носителя причины .

Древнегреческий ученый, математик и механик Архимед Сиракузский (ок. 287 - 212 гг. до н. э.) был автором многих технических решений. Происхождение термина "эврика" приписывают его восклицанию в момент открытия им гидростатического закона (heureka! - нашёл!). Он описывал и способы создания новых технических объектов из стандартных элементов. Известна его игрушка из 14 пластин слоновой кости различной конфигурации; с помощью транспонирования отдельных элементов можно создать множество фигур - шлем, кинжал, корабль и т. д.

Римский поэт и философ Тит Лукреций Кар в своей философской поэме "О природе вещей" излагает учение греческого философа Эпикура, который предлагает получать различные объекты путем комбинирования составляющих их частей и присоединением других частей .

Эвристика - наука о творческом мышлении. Цель эвристики - исследовать правила и методы, ведущие к открытиям и изобретениям.

Английский философ и естествоиспытатель Роджер Бэкон (ок. 1214 - 1292 гг.) видел основу всякого познания в опыте, который, по его представлениям, может быть двух видов: внутренний - мистический "озарение" и внешний. Бэкон предугадал ряд открытий, например, телефона, самодвижущихся повозок, летательных аппаратов и др. Он предсказал большое значение математики, без которой, по его мнению, не может существовать ни одна наука .

Знаменитый испанский ученый раннего средневековья Раймунд Луллий (ок. 1235 - 1315) разработал метод познания с помощью логических операций и изобрёл первую логическую машину. Свой метод он изложил в труде под названием "Великое Искусство". Основная идея метода заключалась в символическом обозначении различных понятий и последующем их комбинировании (сочетании) с целью получения новых знаний.

При этом Луллий исходил из принятого тогда убеждения, что в каждой области науки имеется небольшое число исходных понятий, с помощью которых выражаются бесспорные, самоочевидные положения, не нуждающиеся в аргументации и доказательствах. Из сочетания этих понятий и сформулированных с их помощью истин и возникает знание. В овладении этими сочетаниями и тем, что из них вытекает, и состоит истинная мудрость.

Его машина представляла собой систему тонких концентрических дисков, каждый из которых мог вращаться независимо от остальных. По краю каждого диска были нанесены обозначения элементарных понятий (понятий о свойствах объектов, из различных модификаций и отношений и др.); при вращении дисков на радиусах получались самые разнообразные сочетания данных понятий, которые затем можно было подвергать анализу .

Английский философ и государственный деятель, лорд-канцлер Фрэнсис Бэкон (1561-1626 гг.) основой познания и творчества считал индукцию, опирающуюся на наблюдение, опыт, подчеркивая значение эксперимента. По словам Маркса, для Бэкона "Наука есть опытная наука, и состоит в применении рационального метода к чувственным данным" .

Бэкон написал "Новый органон", который, по мнению автора, должен был заменить аристотелевский "Органон" и стать основой логики изобретений и открытий" .

Бэкон предложил создать научную организацию, которая бы действовала как коллективный орган. Её задача, как говорил он сам, заключалась в том, чтобы вооружить человечество орудием познания и действия - логикой "Нового органона". Бэкон дал науке новое направление развития и связал его с прогрессом материальной деятельности. Он, пожалуй, первый рассмотрел науку, с одной стороны, как систему научного знания, и, с другой стороны, как вид научной деятельности с его собственной организацией. Карл Маркс назвал Ф. Бэкона настоящим родоначальником "всей современной экспериментирующей науки" .

Французский философ и математик Рене Декарт (1596-1650 гг.) разрабатывал вопрос о методе познания. Как и Фрэнсис Бэкон, он видел конечную задачу знания в господстве человека над силами природы, в открытии и изобретении различных технических объектов и выявлении всевозможных причин и действий, в усовершенствовании природы. Однако он призывал сомневаться всем и во всем: "... Я мыслю, следовательно, я существую..." . Истинность знаний, по Декарту, может быть получена, если в качестве средств мышления будут использованы индукция и дедукция, руководствуясь при этом достоверным методом. Правила этого метода состоят из четырех требований, изложенных им в "Правилах для руководства ума":

  1. допускать в качестве истинных только такие положения, которые представляются ясными и отчетливыми, не могут вызвать никаких сомнений в их истинности;
  2. расчленять каждую сложную проблему на составляющие ее частные проблемы или задачи;
  3. методически переходить от известного и доказанного к неизвестному и недоказанному;
  4. не допускать никаких пропусков в логических звеньях исследования .

Нидерландский философ Бенедикт (Барух) Спиноза (1632-1677) был убеждён в том, весь мир представляет собой математическую систему и может быть до конца познан геометрическим способом. Он утверждал, что все вещи одушевлены, хотя и в различной степени. Но "познавать всегда все ясно и отчетливо" способен только человек .

По мнению Спинозы, познание разделяется на три рода: чувственное, понимание и интуицию, а источник достоверной истины лежит в противопоставлении понимания чувственному познанию. Чувственное "телесное" познание - это все многообразие мира, которое мы можем видеть, слышать и воспринимать с помощью органов чувств и приборов. Чувственное познание, по мысли Спинозы, неадекватно отражает объекты и часто ведет к заблуждениям, хотя и содержит в себе элементы истины» Понимание состоит из рассудка и разума, интуиции же Спиноза представляет как фундамент достоверного знания .

Готфрид Вильгельм Лейбниц (1646-1716 гг.), известный немецкий философ, математик, физик, изобретатель, юрист, историк и языковед, полагал, что нужно свести все понятия к некоторым элементарным понятиям, образующим как бы алфавит, азбуку человеческих мыслей. Когда это удастся сделать, считал Лейбниц, станет возможным заменить обычные рассуждения оперированием со знаками. Правила такого оперирования должны однозначно определять последовательность выполнения действий над данными знаками. Таким образом, Лейбниц предполагал решать и творческие, в том числе и изобретательские задачи .

Одним из фундаментальных трудов по методике технического творчества является книга чешского математика и философа Бернарда Больцано (1781 - 1848 гг.) "Науковедение", четвертая часть, которой называется "Искусство изобретательства". В ней автор изложил методику изобретательства, включающую различные методы эвристические правила... Толчком для его работ послужили труды Г. Лейбница. В качестве первого правила для решения задачи Больцано предлагает определить ее цель и отсечь непродуктивные направления поисков. Далее анализируют известные знания и делают соответствующие выводы. Затем выдвигаются пробные предложения и гипотезы, пытаются решить задачу разными методами. При этом критически анализируются и оцениваются различные решения. Выбирают наиболее ценные из них. В книге Больцано содержатся специальные правила решения творческих задач. К изобретательским он относит: нахождение целенаправленных задач, выявление представлений, появившихся в подсознании, оценку их реальности, объема, аналогов, а также логические операции и приемы мышления. Он рассматривает различные виды умозаключений, наиболее частые ошибки и типы интеллектуальных задач .

Известный французский математик Жюль Анри Пуанкаре (1854-1912 гг.) помимо математики занимался и вопросами эвристической деятельности. В своих работах он придавал большое значение роли бессознательной деятельности мозга. Одним из примеров такого процесса Пуанкаре описывает процесс возникновения одного из своих открытий . При этом Пуанкаре так же, как и Гелемгольц, одним из условий успеха бессознательной деятельности называл предшествующее всестороннее изучение проблемы и последующий отдых, в процессе которого чаще всего и появляются идеи .

Теорией эвристики в России занимался инженер-патентовед П.К.Энгельмейер. Он автор ряда работ по этой проблеме .

Он был твердо убежден в необходимости и возможности создания науки о творчестве и, в частности, об изобретательстве. По его инициативе в 20-х годах в России был создан Эврологический институт, в котором, изучалось в основном литературное и художественное творчество. Исследованием творческого процесса занимался и академик В.М.Бехтерев, предложивший создать институт ("Пантеон мозга"), в котором изучались бы особенности творчества великих людей.

Одна из первых попыток создать общую теорию систем (теологию) осуществил А. А. Богданов . Все приведенные выше работы в той или иной мере способствовали развитию и выявлению различных приемов и методов научно-технического творчества.

Первые работоспособные методы активизации творческого процесса начали появляться в конце 20-х годов XX столетия. К ним относятся метод фокальных объектов, предложенный немецким профессором Кунце (он назвал его "метод каталога") и усовершенствованный в 50-х американским ученым Чарльзом Вайтингом; мозговая атака (мозговой штурм), предложенная в 1939 г американцем Алексом Осборном; морфологический анализ, предложенный в 1942 г. швейцарским астрономом Фрицом Цвикки, синектика, разработанная американцем Уильямом Дж. Гордоном в 1952 году и др.

Среди современных исследователей изобретательского творчества следует упомянуть американского ученого Д. Пойа, французского математика Жака Адамара (1865-1963 гг.), ученого из США Эдварда де Боно и др.

В дальнейшем стлали появляться другие методики творчества, например, метод Тагучи (Taguchi), QFD (Quality Function Deployment), «6 Сигма (Six Sigma)», TQM (Total Quality Management) и некоторые другие методы.

Все эти методы успешно изучаются и сегодня на различных курсах. Они достаточно просты, изучение их не занимает много времени, и они дают свои практические результаты каждый в своем направлении.

Эти методы интенсифицируют перебор вариантов, позволяя получить большее количество идей в единицу времени. Они все используют традиционный метод проб и ошибок, который редко или случайно приводит к изобретательским решениям. В методе проб и ошибок, прежде всего, используется имеющийся у решателя опыт, который связан с психологической инерцией.

Указанные методы не позволяют решать сложные изобретательские задачи.

Изобретательское решение получают путем выявления и разрешения противоречия , лежащего в глубине задачи. Таким образом, выявляется и устраняется первопричина проблемы . Тогда как при традиционном (шаблонном, рутинном) мышлении получают шаблонное решение, в котором всегда ищется компромисс, пытаясь незначительно улучшить одни параметры и невольно ухудшить другие. Поэтому главная разница между изобретательским и шаблонным мышлением состоит в том, что при изобретательском мышлении ищут противоречие, а при шаблонном – компромисс.

Г.Я. Буш

Издательство "Лиесма", г. Рига, 1972

3. ПРАКТИЧЕСКИЕ МЕТОДЫ ТЕХНИЧЕСКОГО ТВОРЧЕСТВА

3.1. КЛАССИФИКАЦИЯ МЕТОДОВ

Методы технического творчества, базирующиеся на объективных закономерностях, открытых наукой, являются основой создания новых решений технических задач с общественной значимостью. Известно множество практических методов технического творчества, которые различаются по своей эвристической ценности, уровню разработки, общности применения, четкости определения. Фонд методов технического творчества постоянно меняется. Одни найденные методы решения изобретательских задач становятся стереотипными и используются для решения других задач аналогичного типа. Некоторые методы технического творчества постепенно разрабатываются до уровня жесткого алгоритма и становятся методами решения тривиальных технических задач, причем и сами задачи, решаемые этими методами, становятся тривиальными. Чем более общим является метод решения изобретательских задач, тем дольше он сохраняет свои эвристические свойства.

Методы технического творчества еще недостаточно систематизированы и классифицированы. Научно обоснованные методы технического творчества должны удовлетворять следующим основным требованиям: они должны отражать обобщенный опыт работы изобретателей, быть достаточно понятно определены и легко актуализироваться, должны быть определены возможная роль и место метода в творческом процессе изобретателя и обобщены типовые условия применимости методов. Методы должны иметь единую и четкую классификацию. Следует также обобщить известные приемы комбинирования методов, расчленения их на разновидности, приемы и операции, объединения методов в программы решения изобретательских задач.

Остановимся подробнее на классификации методов изобретательства. Такая классификация может осуществляться по различным признакам.

По признаку общности методы изобретательства можно разделить на всеобщий, общие и частные методы изобретательства. Всеобщим методом изобретательства, как и всякого творчества, является марксистско-диалектический метаметод, причисляемый нами к стратегическим средствам решения изобретательских задач. Общие методы изобретательства применяются для решения широкого круга изобретательских задач в разных областях техники. К таким методам можно отнести методы эвристической аналогии, эвристического объединения, эвристической инверсии и т. д. К частным методам изобретательства принадлежат методы, предназначенные для решения специальных изобретательских задач или задач в определенной, как правило, узкой области техники. В их число входят, например, метод превращения возвратно-поступательного движения во вращательное, метод отдаленной гибридизации, метод компаундирования и т. д.

Следует отметить, что деление методов на общие и частные является условным: практически трудно очертить границу между одними и другими. Кроме того, в изобретательской практике узкоспециальные частные методы нередко применяются для решения ранее не предусмотренных задач и дают в случае успеха, как правило, весьма оригинальные решения.

По признаку детерминированности методы изобретательства можно делить на эвристические и алгоритмические. Жестко детерминированные алгоритмические методы принципиально непригодны для нахождения решения изобретательской задачи, хотя и могут быть использованы в творческом процессе изобретателя для осуществления операций репродуктивного типа.

Эвристические методы (неполные алгоритмы, рекомендации, предписания, не обладающие свойствами детерминированности и обязательной результативности) в настоящее время являются основными при решении изобретательских задач.

По назначению методы изобретательства, применяемые для оптимизации творческого процесса изобретателя, упрощенно классифицируются следующим образом.

По уровню сложности методы изобретательства разделяются на простые и сложные.

К простым причисляют способы постановки, решения, реализации изобретательской задачи, содержащие элементарные операции, применяемые в определенных типовых ситуациях. Таковы, например, метод смешивания ингредиентов вещества, метод применения гибких промежуточных элементов для соединения технических объектов или их частей и т. д.

Сложные методы содержат элементы нескольких простых. Так, метод поэтапной мозговой атаки содержит элементы обратной мозговой атаки, прямой мозговой атаки, двойной мозговой атаки и мозговой атаки экспертов. Простые и сложные методы изобретательства, как правило, применяются для выполнения определенной стадии или шага творческого процесса изобретателя.

В связи с развитием кибернетики в последнее время принято подразделять методы изобретательства на методы, предназначенные для решения изобретательских задач человеком, методы решения изобретательских задач кибернетическими машинами и методы, предназначенные для решения человеком в содружестве с кибернетическими машинами. Некоторые из этих методов могут быть универсальными.

По эвристическому принципу методы решения изобретательских задач можно условно разделить на следующие основные виды: методы эвристической аналогии, эвристического комплекса, эвристического разделения и редукции, эвристической инверсии и методы эвристического комбинирования. Эти основные группы, в свою очередь, делятся на множество методов, имеющих свои особенности и приемы.

Особое практическое значение для изобретателей имеет классификация задач по эвристическому принципу, облегчающему выбор методов для поиска конкретного решения.

3.2. МЕТОДЫ ЭВРИСТИЧЕСКОЙ АНАЛОГИИ

Методы эвристической аналогии основываются на естественном стремлении человека к подражанию. С помощью этих методов изобретательские задачи решаются путем усмотрения аналогичных ситуаций в природе, технике, общественных и других явлениях и использования найденных аналогий для устранения противоречий, создавших проблемную ситуацию.

Простейшие аналогии видит каждый. Обнаружение скрытых аналогий - типичное качество изобретателя. Изобретатель прежде всего тот, кто видит аналогии качеств и свойств, хороший изобретатель тот, кто видит аналогии функций и поведения, наилучший изобретатель усматривает аналогии отношений и пропорций и великий изобретатель тот, кто способен усмотреть аналогии изобретательских задач и средств их решения.

Древнейшей группой методов аналогии является группа методов аналогии с природой. Природа была учителем изобретателя. Первые орудия труда человек находил непосредственно в природе. Потом он стал познавать свойства объектов природы и использовать их для удовлетворения своих потребностей. Так, например, некоторые племена Африки используют навоз в качестве связующего материала, а пепел навоза - как белила.

Начиная рассматривать эвристические методы изобретательства, следует оговориться, что методы аналогии, как и другие эвристические методы поиска решения задач, не гарантируют достижения решения в каждом отдельном случае и могут привести к ошибочным результатам. Так, например, в XVIII веке представляли себе, что условия плавания аэростатов в воздухе имеют полную аналогию с условиями плавания морских судов, поэтому предлагалось много проектов управляемых аэростатов с парусами, веслами и рулями. Управляемые аэростаты д"Артуа, Массэ и Христиана Крамба имели по два весла. Аэростат Гютона де Морво имел прямоугольный руль, аэростат Менье - треугольный руль, аэростат Миолана и Жанины - руль в виде хвоста рыбы. Аэростат Мартина был оборудован вертикальным парусом над корзиной, а аэростат Карры имел целых три паруса. Эти решения по аналогии успеха не имели.

Каждый из эвристических методов имеет свои сильные и слабые стороны, границы применяемости, разновидности, вариации, приемы. Ограничимся перечислением наиболее распространенных эвристических методов с примерами их использования в изобретательской практике.

Метод приспособления природных конструкций и веществ для технических целей предусматривает проведение ряда несложных операций с объектами природы.

Древнейшие галечные орудия представляли собой камни, окатанные движением морской или речной воды и наскоро оббитые немногими ударами в рабочей части. Первый топор в северных областях земного шара изобретен путем приспособления нижней челюсти пещерного медведя

Метод палеобионики заключается в использовании для поиска решения изобретательской задачи прототипов вымерших животных и растений.

Изобретатели Ю. Буштедт, Л. Лагиян, Н. Литвинов изобрели двухъярусную буровую колонну по аналогии с конструкцией зубов вымерших палеоящеров (авт. свид. СССР№ 161008).

Метод биомеханики рекомендует создать конструктивные изобретения по аналогии с механическим принципом действия объектов природы. Русский ученый П Л Чебышев в конце прошлого века разработал "стопоходящую машину", используя принципы движения ног кузнечика.

Метод биохимии рекомендует использовать процессы по аналогии с биохимическими реакциями, ферментами, катализаторами и т. п. Этот метод был использован при создании способов искусственного получения хлорофилла, хинина, мочевины, красителей и др.

Метод биоархитектуры заключается в использовании аналогии с формами, архитектоникой и пропорциями живой природы для решения изобретательских задач. Польский архитектор А Карбовский применил в жилищном строительстве опыт пчел в сооружении восковых сот, которые являются идеальной формой для монолитных конструкций - сотовых стен, ограждений, радиаторов и т. д.

Метод биокибернетики применяется для решения множества изобретательских задач вплоть до воссоздания искусственных биологических структур, процессов и функций, построения кибернетических устройств, способных осуществлять логические операции Создан целый ряд кибернетических устройств для решения интеллектуальных задач по аналогии с природными объектами, как например, "Перцептрон" Ф. Розенблата, "Личность Олдос" Дж. Лоулина, "Гомункулюс" Дж и С. Геллахоннов и др.

Метод аналогии с предметами, явлениями и веществами неживой природы также позволяет в ряде случаев решать изобретательские задачи Так, сотрудник Грозненского нефтяного научно-исследовательского института Я. Мирский для молекулярного раздела нефти создал молекулярные сита на основе аналогии с природными камнями - неолитами.

Метод аналогии с физическими явлениями позволил Г. Галилею изобрести маятник для измерения биений пульса по аналогии с раскачивающейся люстрой в Пизанском соборе.

Метод аналогии с общественными явлениями был использован Т Гротгусом для создания способа и теории электролиза воды. Механизм электропроводности, по Гротгусу, может быть представлен как цепочка последовательных разложений и воссоединений молекул воды и выделение крайних звеньев цепочки в виде свободных элементов у полюса тока. "Цепочка Гротгуса", как писал сам автор, возникла по аналогии с модным танцем того времени "grand chatne".

Метод прецедента применяется для создания новых технических объектов по аналогии с разработанными в прошлом изобретениями. Английский изобретатель Эверитт создал автомат для продажи спичек по аналогии с автоматом для продажи "священной воды", изобретенным еще Героном Александрийским (I век до н э.).

Метод реинтеграции (метод нити Ариадны) заключается в создании нового сложного технического объекта или процесса по аналогии с одной особо значащей деталью, операцией или простым техническим объектом. Известный изобретатель Ф. Цандер в 1930 г. создал свой ракетный двигатель ОР-1 по аналогии с паяльной лампой.

Метод применения стандартных копирующих приспособлений (трафаретов, шаблонов, масок, моделей и т д) использовал Т. А. Эдисон, когда он в 1875 г. создал мимеограф, применив парафиновый трафарет, под который подкладывалась чистая бумага Для размножения печатного текста по трафарету прокатывали валиком, смоченным специальными чернилами.

Метод замещения принципа работы технического объекта эквивалентным использовали проф. А. Лясс и сотрудники из научно-исследовательского института технологии и машиностроения, которые изобрели новый способ уплотнения формовочной смеси путем замещения традиционного принципа другим, эквивалентным: они предложили уплотнять формовочную смесь заливкой. Авторам изобретения в 1967 г. присуждена Ленинская премия; лицензия на него была продана во Францию с правом использования ее в Испании, Португалии и Швейцарии.

Метод замещения конструкций их эквивалентами использовал финский изобретатель Э. Хенриксон при создании новой конструкции замка без пружин, применив" поворачивающиеся шайбы кассового аппарата.

Метод замещения материалов их эквивалентами позволил Т. А. Эдисону в 1900 г. изобрести железо-никелевые щелочные аккумуляторы вместо применявшихся тогда свинцовых аккумуляторов.

Метод протезирования заключается в подборе и замещении элементов технического объекта или живого организма функционально аналогичным техническим устройством, в случае, когда регенерация или замена тождественными запасными частями невозможны. Еще русский изобретатель И. Л. Кулибин в 1791 г. создал весьма совершенные протезы ног. Творческий коллектив под руководством Д. М. Иоффе изобрел протез плеча с биоэлектрическим управлением (авт. свид. СССР № 240176).

Метод увеличения размеров основан на существующей тенденции к увеличению размеров прототипа некоторых технических объектов. Метод прост и применяется с древнейших времен, о чем свидетельствуют гигантолиты, бифасы и мегалитические сооружения каменного века. Так, путем увеличения размеров ножа была изобретена сабля. Прием этого метода: увеличение технического объекта до предельно возможных размеров - гиперболизация,- дал множество новых технических устройств - гигантские экскаваторы, турбины, самосвалы, прокатные станы, корабли, самолеты, дирижабли.

Метод уменьшения был известен уже на заре изобретательства, о чем свидетельствуют микролиты в виде проколок, шипов-вкладышей весом в несколько граммов и даже миллиграммов. Методом уменьшения размеров автомобильного счетчика пройденного пути был изобретен курвиметр для измерения расстояния на картах и чертежах.

Метод моделирования позволяет решать многообразные изобретательские задачи. Для этой цели можно использовать физическое (миниатюрное, партикулярное), математическое и кибернетическое моделирование. Методом кибернетического моделирования зрительного аппарата человека сотрудники центра перспективных исследований компании "Дженерал Электрик" создали биоэлектрический датчик положения - визилог, сигнализирующий о своем положении в пространстве. Визилог может быть использован в космической навигации.

Метод имитации заключается в создании таких технических объектов, которые по форме, цвету, внешнему виду аналогичны какому-то объекту, но по ряду других свойств (например, по химическому составу, структуре) не соответствуют ему. Чукчи для приманки животных изобрели особый инструмент из кости - вабик, имитирующий поскребывание по льду нерпы. Конструкцию детского игрушечного автомата Б. Д. Робустов, С. С. Ферапонтов и М. К. Пучков создали путем имитации боевого автомата (авт. свид. СССР № 242726).

Метод псевдоморфизации предполагает выполнение" одного технического объекта в форме другого, имеющего совершенно иное назначение, с целью создать ложное представление. По методу псевдоморфизации создано огнестрельное оружие в виде тросточки, зажигалка в виде пистолета, авторучка в виде гвоздя, копилка в форме книги, радиоаппарат в виде бумажника и др.

Метод антропоморфизации заключается в создании человекоподобных по внешнему виду технических конструкций. Методом антропоморфизации созданы андроиды - железный "человек-привратник" Альберта Великого, "писец" Ф. Кнауса, "флейтист" Ж. Вокансона, "парикмахер" Г. Грасфельдера, а также куклы, кубки в форме человеческой головы, кариатиды - венчающие части колонн, служащие опорой для антаблемента или арки, и т. д.

Метод аналогии с формой животных и растений целесообразен не только с технической, но и с художественной точки зрения, поскольку пропорциональность, гармоничность, цветовые характеристики природных аналогов могут быть с успехом применены для создания совершенных и красивых технических изделий. Особый кастет, который по форме представляет собой почти точный слепок когтей тигра, изобрели индейцы. В истории изобретательства известны также "летающий голубь" Архита Теренского, швейная машина "белка" С. Б. Эллиторпа.

3.3. МЕТОДЫ ЭВРИСТИЧЕСКОЙ ИНВЕРСИИ

Методы этой группы предполагают поиск решений изобретательских задач в направлениях, противоположных традиционным, в инвертировании технического объекта, изменении расположения элементов объекта, уравновешивании нежелательных факторов средствами противоположного действия. Инверсии можно подвергать сами технические объекты, их элементы, структуру, агрегатное состояние, форму, параметры движения. Некоторые методы инверсии, например, метод инверсии гетерогенных структур в гомогенные, метод деструкции, применяются редко, в основном для решения ряда специальных задач; другие, например, методы антитезиса и компенсации, распространены и имеют универсальные свойства.

Метод инверсии агрегатного состояния веществ применяется с целью достижения технического эффекта путем преобразования агрегатного состояния веществ. Этот метод позволил изобрести холодильные компрессоры, сатуратор, льдогенератор, ингалятор, пульверизатор.

Метод инвертирования заключается в изменении расположения в пространстве традиционного технического объекта (нижней частью вверх или набок), превращении объектов горизонтального типа в объекты вертикальной композиции, перестановке элементов технического объекта в обратном порядке. Стенд для испытания и обкатки гусеничных повозок, созданный изобретателем М. Г. Жарновым, отличается тем, что в качестве бесконечной ленты и поддерживающего механизма применена ходовая часть гусеничной повозки, перевернутая опорными роликами вверх (авт. свид. СССР № 79242).

Метод инверсии плоскости действия технического" объекта позволил изобретателю Э. Берлинеру в 1887 г. изменить плоскость записи звука на валике фонографа Т. А. Эдисона и записать звук на пластинке.

Метод инверсии одних физических величин в другие чаще всего применяется в приборостроении, радиотехнике и электротехнике. Распространенным приемом является инверсия оптических, механических, звуковых, тепловых и других величин в электрические. Так, например, путем инверсии механических колебаний иглы, увлекаемой извилинами звуковой борозды вращающейся патефонной пластинки, в электрические колебания звуковой частоты был создан адаптер.

Метод инверсии вредных сил в полезные позволил инженеру А. Е. Маноцкову создать планер, у которого вибрация крыльев не оказывает вредного воздействия на пилота, а используется для создания дополнительной подъемной силы.

Метод антитезиса заключается в использовании для создания нового технического объекта явлений, процессов, приемов и свойств предметов, диаметрально противоположных традиционным.

Уже на заре изобретательства первобытные племена обрабатывали твердый кремень с помощью более мягкого рога или кости. Изобретатель активной турбины К. Г. Лаваль в 1889 г должен был решить проблему вращения турбины при скорости 30 тысяч оборотов в минуту. Традиционный прием - применение укорочения, утолщения и упрочения вала - не давал желаемых результатов, поскольку добиться точного уравновешивания турбинного колеса практически оказалось невозможным. Лаваль поставил свой знаменитый опыт с гибким валом из камышового стебля и решил проблему методом антитезиса - применением податливого гибкого вала.

Разновидностями метода антитезиса можно считать методы регенерации, рекуперации, инверсии жестких и твердых материалов в гибкие и пластичные.

Методы инверсии асинхронных процессов в синхронные или наоборот заключаются в целесообразном изменении протекания процессов во времени. Изобретатели В. Т. Яшков, А. В. Якименко и А. В. Худяков предложили аудиометр, отличающийся тем, что в нем применен блок синхронизации, содержащий схему совпадения сигнала коммутатора и сигнала начала записи (авт. свид. СССР №240167).

Метод механической компенсации представляет собой уравновешивание нежелательных и вредных факторов механическими средствами противоположного действия. Во Всесоюзном научно-исследовательском институте хлебопекарной промышленности создан дозатор жидкости, отличительной особенностью которого является то, что для точности дозирования путем уравновешивания поплавка со штоком цилиндра в момент отсечки дозы на штоке укреплен уравновешивающий груз (авт. свид. СССР№ 188695).

Метод компенсации посредством упругих элементов является разновидностью метода механической компенсации. С применением этого метода изобретены вагонные буферы с пружинами для смягчения ударов о препятствия при движении. Аналогичным образом созданы гиреобразные и сальниковые компенсаторы, предотвращающие появление чрезмерных напряжений в стенках трубопроводов при тепловых деформациях.

Методом гидравлической компенсации Ю. В. Селезнев в содружестве с другими изобретателями разработал новую конструкцию пиметра с повышенной надежностью. Особенностью предлагаемого пиметра является то, что устройство для гашения колебаний выполнено в виде гидравлического демпфера (авт. свид. СССР № 217670).

Методом электромагнитной компенсации создан сварочный генератор, изобретенный Г. М. Каспржаком и другими. Генератор позволяет регулировать крутизну фронтов сварочного тока в широком диапазоне. Дополнительные полюсы генератора снабжены демпферными обмотками, создающими динамическую компенсацию их индуктивности при переходном процессе (авт. свид. СССР№ 188605).

Метод оптической компенсации применяется при решении ряда специальных изобретательских задач. По этому методу изобретены оптические компенсаторы в рефрактометрах для уничтожения окрашенной полосы на границе светлой и темной частей поля зрения, а также способ стабилизации космических аппаратов давлением солнечных лучей.

Метод акустической компенсации в изобретательской практике применяется сравнительно редко. Примером его применения может служить изобретение акустических компенсаторов для звуковой пеленгации.

Метод реверсирования заключается в изменении направления вращательного движения в противоположную* сторону. Японские изобретатели Т. Коляма и другие разработали способ колебательного перемешивания расплавленного металла, отличающийся тем, что сосуд с металлом подвергают эпицентрическому вращению-попеременно в прямом и обратном направлении (патент СССР №247141).

Метод реципрокации рекомендует возвращать технический объект или процесс к исходной точке, к начальному состоянию, к прежним условиям. Различают одинарную (метод бумеранга) и многократную реципрокации. Методом реципрокации созданы древние приспособления для добычи огня (рис. 9) - огнивное сверло, огнивная пила, огнивный круг, огнивное сверло с луком, а также способ реципрокативного сверления с поршнем.

Метод инверсии возвратно-поступательного движения во вращательное позволяет повысить быстроходность машин. Ф. Кениг и А. Бауэр в 1811 г. создали плоскопечатную машину, заменив верхнюю плиту печатного станка, производящую возвратно-поступательное движение, круглым барабаном, который вращался, соприкасаясь с нижней плитой печатного станка - талером, и прижимал бумагу.

Метод инверсии вращательного движения в возвратно-поступательное использовали австралийцы Г. В. Уолз, В. Э. О. Холт и Б. О. Левери, разработавшие устройство для формирования крученых нитей, отличительной особенностью которого является осевое возвратно-поступательное движение крутильного механизма, получаемое путем его превращения из вращательного движения кривошипным механизмом (авт. свид. СССР № 247088).

Метод инверсии пути рекомендует изменять направление движения технического объекта или его элемента на противоположное. Граммофонные пластинки Э. Берлинера проигрывались от центра к краю. Французские изобретатели братья Пате предложили способ проигрывания пластинок в обратном направлении - от края к центру. Новые проигрыватели стали называться по фамилии изобретателей патефонами.

Метод инверсии иммобильных технических объектов в мобильные - давно известный и эффективный метод технического творчества. Примером его применения может служить инверсия стационарных крепостей в подвижные осадные башни (Ассирия и Древняя Греция). Аналогичным образом было создано одно из важнейших русских военных изобретений своего времени - подвижная крепость - так называемый гуляй-город.

Методы эвристической инверсии формы технического объекта принадлежат к простейшим методам решения изобретательских задач. Инверсия формы может преследовать различные цели - расширение функций объекта, повышение производительности, удобства обслуживания или достижения другого технико-экономического эффекта.

Методом инверсии формы традиционной поперечной пилы были изобретены циркулярная пила и ее разновидности - лобзик, ленточная пила, ножовка, бугельная пила, лучковая пила, наградка.

Метод инверсии асимметрических конструкций в симметричные применяется для решения ряда специальных задач. Детали, обладающие зеркальной симметрией только в одной плоскости, порождают необходимость применения правых и левых деталей. Оригинальность гироскопического устройства, созданного Л. И. Карчу, заключается в том, что с целью повышения жесткости и равножесткости его конструкций опоры ротора выполнены симметрично относительно геометрического центра подвеса (авт. свид. СССР № 179013).

Метод инверсии симметричных конструкций в асимметрические также позволяет решить ряд изобретательских задач. С применением этого метода были изобретены, например, тиски с асимметрично смещенными губами, позволяющими зажимать в вертикальном положении длинные заготовки.

Методы инверсии стилевых трафаретов и штампов представляют собой приемы художественного конструирования и имеют прямое отношение к изобретательству. Современный художественный стиль в нашем веке пережил несколько трафаретов. Сперва появился стилевой штамп ступенчатой формы. В 20-х и 30-х годах строили ступенчатые небоскребы, радиоаппараты, холодильники, зажигалки, измерительные приборы. С начала 30-х до 40-х годов преобладал стилевой штамп обтекаемой формы.

К этой группе принадлежат методы инверсии ступенчатой, обтекаемой, прямоугольной формы, методы цилиндрических, конусообразных, трапециевидных, клиновидных, призматических, сферических и спиралеобразных конструкций.

3.4. МЕТОДЫ ЭВРИСТИЧЕСКОГО КОМПЛЕКСА

Эвристическое объединение технических объектов, их элементов, веществ, функций, операций и даже технических объектов с живыми организмами лежит в основе методов эвристического комплекса.

В изобретательской практике применяются три схемы комплексного объединения элементов: новое + новое; новое + старое; старое + старое.

В некоторых случаях создание комплекса принципиально просто. Например, путем объединения насоса с такими объектами, как горелка, паровая кастрюля, радиатор, счетчик оборотов и лодка, были получены соответственно примус, паровая машина, калорифер, анемометр и катер без винта. Разумеется, что в комплекс могут быть объединены и не два, а большее количество технических объектов, устройств и элементов. Так, объединенные с тем же насосом ресивер и трубопровод дали компрессор, пресс и манометр - гидравлическую испытательную машину, ручка и перо - авторучку.

Метод интеграции заключается в комплексном объединении технических объектов или элементов, имеющих самостоятельное значение и сохраняющих его после объединения в новом комплексе. Французский инженер Ж. Кюнью в 1783 г. изобрел паровую повозку путем объединения телеги с паровым котлом.

Метод концентрирующей интеграции заключается в создании нового технического объекта путем такого объединения двух или нескольких элементов самостоятельного назначения, при котором они полностью или частично включаются один в другой.

Изобретатель А. М. Пастухов создал удочку для подледного лова с рукояткой, внутри которой смонтированы электромагнит с якорем, гальванический элемент, триггерный преобразователь, регулятор частоты колебаний и противовес со стержнем, а в передней части рукоятки расположен карман для запасных мормышек (авт. свид. СССР № 246956).

Метод создания телескопических конструкций является разновидностью метода концентрирующей интеграции. Изобретатели Н. А. Берчин, О. М. Устинович и Г. Г. Намзер предложили устройство для подвода жидкости к подвижным объектам и для ее отвода, отличающееся тем, что с целью уменьшения утечек жидкости за пределы устройства применены телескопически раздвигаемые подводящие трубы, смонтированные внутри телескопических раздвигаемых отводящих труб (авт. свид. СССР №240191).

Метод пространственного сращения также является разновидностью метода концентрирующей интеграции. Примерами его применения для создания технических объектов могут служить стенные шкафы, радиоаппараты, встроенные в полки или в секретер, зеркало, вделанное в дамскую сумочку, аппараты связи, встроенные в рабочий стол.

Метод агглютинации осуществляется путем присоединения к основному техническому объекту другого, который может и не иметь самостоятельного значения, причем присоединение может осуществляться без изменения конструкции соединяемых объектов и быть временным.

На основе метода агглютинации создан электронный вычислительный центр. К основной машине можно по мере надобности присоединить несколько десятков внешних устройств - перфораторов, накопителей, приспособлений для ввода и печатания информации.

Метод объединения технических объектов посредством применения промежуточных элементов или операций позволил группе изобретателей Рижского государственного электротехнического завода ВЭФ под руководством Ю. П. Поне разработать новый способ установки радиоэлементов с гибкими выводами на платы с печатным монтажом. Оригинальность способа заключается в том, что радиоэлементы закрепляют на пленку с размещенными в отверстиях элементами на плату и после соединения выводов пленку как промежуточный элемент удаляют, например, растворением (авт. свид. СССР № 202258).

Метод объединения нескольких процессов был применен при создании способа переработки отходов титана. Особенность способа заключается в совокупном применении процессов хлорирования исходных отходов титана четыреххлористым титаном в среде хлоридов щелочных или щелочноземельных металлов при температуре порядка 600-650°С, отделение низших хлоридов титана от примесей и восстановление низших хлоридов титана магнием или натрием (авт. свид. СССР № 188674).

Метод объединения технических элементов или систем с живыми организмами в единую техническую систему является прогрессивным приемом решения изобретательских задач. В США создан сверхчувствительный прибор, фиксирующий запах ядовитых газов. В основе этого прибора живая муха, обладающая высокой чувствительностью к запахам. К ее нервным окончаниям присоединены электроды по которым поступает сигнал о появлении газов.

Метод агрегатирования заключается в создании новых технических объектов путем объединения стандартных технических элементов, имеющих самостоятельное назначение. Методом агрегатирования В. В. Прибылков и И. М. Белянский создали агрегатную самоходную машину для раздачи корма и уборки навоза в свинарниках, содержащую скребковый транспортер, шнек, элеватор для выгребания корма и бульдозер для сгребания навоза (авт. свид. СССР № 127512). Все рабочие органы машины смонтированы на базовой детали - раме стандартного шасси ДСШ-М-14 и приводятся в действие от его двигателей.

Метод объединения унифицированных элементов, узлов, деталей , будучи эффективным методом технического творчества, редко дает решение задания на уровне изобретения. Им пользовался Леонардо да Винчи при создании оригинальной конструкции конюшни. Все здание по проекту Леонардо да Винчи возводилось из унифицированных элементов. В ширину конюшня состояла из трех отделений. Среднее отделение предназначалось для перехода и обслуживания, два боковых - для размещения лошадей. Здание могло быть увеличено в длину наращиванием стандартных секций.

Метод модульных элементов - разновидность рассматриваемого метода - применил еще Поллион Марк Витрувий, который установил модуль для калибров свинцовых водопроводных труб.

Архитектор А. Т. Полянский при строительстве зданий применил объемные модули унифицированно. Использование двух типов объемных модулей позволило построить более 70 зданий пионерского лагеря "Новый Артек", в том числе спальных корпусов, столовых, комнат, приемных и медицинских корпусов, пищевых блоков, костровых площадок, гостиниц.

Метод объединения микромодулей в техническом творчестве интенсивно начал использоваться в конце 50-х и в начале 60-х годов главным образом в электронной промышленности. Микромодуль - это простейший стандартный миниатюрный узел радиоэлектронной аппаратуры, собранный из диэлектрических пластинок с укрепленными на них микроэлементами схем.

Метод был с успехом применен при создании американской стратегической ракеты "Минитмэн-2", оперативно-технической ракеты "Першинг", ракет "Cnappoy-l", "Сайдвиндер", "Фалкон", "Феникс" и др.

Метод смешивания - один из простейших методов физического объединения материалов и веществ. Ф. Гофман в 1718 г. приготовил капли, прославившие его имя, смешав одну часть эфира с тремя частями спирта. Путем смешивания жидкого нитроглицерина с твердым пористым пироксилином А. Нобель изобрел динамит.

Метод легирования широко используют изобретатели для создания новых сплавов. Так, например, А. М. Корольков и Е. В. Безус создали новый сплав на основе меди, содержащий марганец и отличающийся тем, что он легирован цезием и цирконием с целью уменьшить удельное электросопротивление без применения температурного коэффициента электросопротивления (авт. свид. СССР №241673).

Метод непрерывного потока предполагает такое объединение материальных элементов производства, которое позволяет параллельно выполнять процессы, операции и приемы на участке производства и обеспечить непрерывное последовательное движение предмета труда через рабочие места в строго установленном ритме.

Метод непрерывного потока в производстве применяется около ста лет - со времени изобретения конвейера. Одним из первых ленточных конвейеров был "песковоз" русского изобретателя А. Лопатина, предназначавшийся для транспортировки золотосодержащих песков на приисках Восточной Сибири.

Методом увеличения количества одновременно выполняемых функций вместо сохи, лишь царапавшей почву, примерно за два столетия до нашей эры был изобретен плуг, который не только разрезал дерн, но и переворачивал вспаханный пласт.

Одной из отличительных особенностей устройства для гидравлической защиты погружного электродвигателя, предложенного коллективом изобретателей под руководством Б. А. Красикова, является то, что турбина двигателя одновременно выполняет функции пяты (авт. свид. СССР №237469).

Метод увеличения количества последовательно выполняемых функций позволяет создавать универсальные технические объекты. Рижский изобретатель О. Рутенберг предложил кровать-носилки для больных (патент Латвии № 307). Советский изобретатель И. А. Тихонов разработал способ пуска синхронных компенсаторов путем включения машины на время асинхронного режима через пусковой блок. Отличительной особенностью способа является использование пускового блока для последовательного пуска нескольких машин (авт. свид. СССР №239409).

Метод дублирования заключается в удвоении рабочих органов, рабочих позиций, технологических процессов. Латышский изобретатель Я. Абеле предложил граммофонную иглу с двумя заостренными концами (патент Латвии № 1907). Путем дублирования веретен Леонардо да Винчи изобрел двухверетенную самопрялку.

Метод компаундирования состоит в том, что для увеличения производительности параллельно соединяют два технических объекта. Спаривание осуществляется различными приемами: технические объекты устанавливаются параллельно как независимые агрегаты, связываются синхронизирующими, транспортными или другими устройствами, наконец, конструктивно объединяются в один агрегат.

Методом компаундирования древнегреческий изобретатель Ктесибий Александрийский изобрел двухсторонний пожарный насос. Русский изобретатель И. Ползунов в 1763 г. создал двухцилиндровую паровую машину.

Метод резервирования состоит в увеличении количества ненадежных технических объектов для повышения надежности технического объекта в целом.

В 1859 г. по проекту И. Брюнеля в Англии был сооружен корабль "Грейт Истерн", прозванный "Левиафаном", считавшийся чудом своего времени и описанный Жюль Верном в его романе "Плавающий город". Корабль имел трехкратное резервирование двигателей - он был оборудован гребными колесами диаметром 17 м, гребным винтом и парусами.

Метод мультипликации рабочих органов является простым, эффективным и одним из наиболее распространенных в изобретательской практике. Методом мультипликации отдельных блоков Архимед изобрел полиспаст. Русский изобретатель Р. Глинков в 1760 г. сконструировал 30-веретенную льнопрядильную машину, приводившуюся в действие водяным колесом.

Методом мультипликации рабочих позиций Леонардо да Винчи создал серию многоствольных органных пушек. Одна из них имеет 33 ствола, расположенных в три ряда. Одновременно стреляют 11 стволов, оборудованных общим устройством для воспламенения заряда. По этому же методу созданы русская ракетница Петра Первого и скорострельное 44-ствольное орудие А. К. Нартова,изготовленное в 1741 г.

Метод увеличения количества обрабатываемых деталей имеет два основных приема: увеличение количества деталей, обрабатываемых одновременно на одной рабочей позиции, и расширение номенклатуры поочередно обрабатываемых деталей после некоторой переналадки станка.

Первым приемом созданы устройства для одновременной штамповки нескольких одинаковых деталей и кройки носильных костюмов. Второй прием позволил создать так называемые специализированные станки для обработки нескольких однотипных деталей разных размеров. Устройство для штамповки, разработанное рижскими изобретателями В. В. Мерий-Мери и Б. А. Иоффе, содержит несколько гидравлических цилиндров с соответствующей оснасткой. Каждый гидроцилиндр выполняет роль отдельной прессовой головки упрощенной конструкции, позволяющей путем изменения ее положения по уровню и наклону производить переналадку на различные размеры и форму деталей.

Метод мультипликации числа актов и операций , по данным советского историка С. А. Семенова, применялся еще в каменном веке. Использование этого метода дало значительный технико-экономический эффект: возросло количество однотипных заготовок, получаемых из одного и того же объема материала, облегчилась их дополнительная обработка при оформлении орудий, повысились качество орудий и эффективность их использования.

Методом многоэтажных конструкций создан многоступенчатый архимедов винт для откачки воды, описанный Джеронимо Кардано (1501-1577), известный "вольтов. столб", изобретенный Александром Вольта в 1799 г. (рис. 14).

Метод многослойных конструкций позволил коллективу изобретателей, руководимому Ш. А. Фурманом, прийти к идее создания ювелирных изделий, имитирующих драгоценные камни. Особенностью изделий является многослойный интерференционный фильтр с чередующимися слоями металлов и диэлектриков, который позволяет получать различные цвета и оттенки (авт. свид. СССР №189535).

Метод гирлянд заключается в мультипликации аналогичных технических объектов путем их последовательного присоединения к связывающему нитевидному элементу.

Древнейшими изобретениями, созданными по методу гирлянд, являются разного рода ожерелья: из раковин улиток, кусочков скорлупы яиц, зубов зверей и летучих.мышей, змеиных костей, птичьих клювов и сушеных ягод.

Советский изобретатель Б. С. Блинов создал высокоэффективные гирляндные продольные и поперечные гидротурбинные установки.

Метод каскадных конструкций и процессов использовали изобретатели Е. X. Ремпе и Т. М. Грюнберг при разработке способа определения содержания аминокислот и сахаров в корневых высших растениях, отличающегося тем, что с целью уменьшить потери аминокислот и сахаров и определить количество этих веществ жидкую питательную среду из-под растений пропускают через каскад колонок с ионообменными смолами (авт. свид. СССР №249028).

Этот метод заложен в основу конструкции каскадной пламенной печи для обжига ртутной руды и каскадного холодильника.

Метод многоступенчатых конструкций и процессов позволил Ч. Парсону в 1876 г. создать многоступенчатую реактивную турбину.

Метод сплетения основывается на объединении гибких однородных технических элементов. Аборигены Новой Гвинеи изобрели плетеный гамак и спальные мешки из травы киран. Южноамериканские индейцы изобрели "типити" - трубчатый пресс для отжима несъедобного сока из клубней маниоки при изготовлении муки. Трубка пресса сплетается из диагонально расположенных растительных волокон, которые сжимаются, если трубу тянуть за оба конца.

Развитие метода сплетения привело к появлению прядения, вязания, ткачества.

Изобретательство можно свести к следующей классификации:

· изменение естественных форм, физического или химического состояния природных предметов путем соединения целых или частей;

· изменение путем разделения целого на части;

· изменение путем придания других свойств обработкой (нагреванием, высушиванием, смешиванием с частицами других веществ);

· использование энергии окружающей природы;

· использование объединенных усилий многих людей (простая кооперация);

· использование животных в качестве тягловой силы;

· форсирование важнейших параметров технического объекта (скорости движения, мощности, точности и т. д.);

· геометризация, симметризация, стандартизация;

· обеспечение непрерывности производственного процесса;

· использование тяжести и упругости тел для механизации и автоматизации;

· переход на рациональное движение;

· дифференциация орудий путем подбора их по форме, весу, размерам, габаритам, материалу, особенностям обработки, функциям;

· специализация производства;

· рационализация путем упрощения, двухсторонней обработки, перехода на прогрессивные способы производства;

· вовлечение в круг хозяйственной деятельности новых природных веществ и изменения их физико-химического состояния;

· комплексное использование полезных материалов (рекуперация, утилизация и т. д.);

· изобретательная деятельность в технике.

По признаку общности методы изобретательства можно разделить: на всеобщий, общие, частные методы изобретательства.

Всеобщий метод изобретательства относится к стратегическим средствам решения изобретательских задач.

Общие методы изобретательства применяются для решения широкого круга изобретательских задач в разных областях техники. К таким методам можно отнести методы эвристической аналогии, эвристического объединения, эвристической инверсии и т. д. (эвристика от греч. heurisko - отыскиваю, открываю).

К частным методам изобретательства принадлежат методы, предназначенные для решения специальных изобретательских задач или задач в определенной, как правило, узкой области техники. В их число входят, например, метод превращения возвратно-поступательного движения во вращательное, метод отдаленной гибридизации, метод компаундирования и т. д.

Следует отметить, что деление методов на общие и частные является условным: практически трудно провести границу между одними и другими. Кроме того, в изобретательской практике узкоспециальные частные методы нередко применяются для решения ранее не предусмотренных задач и дают в случае успеха, как правило, весьма оригинальные решения.

По уровню сложности методы изобретательства подразделяются:

· на простые;

· на сложные.

К простым методам причисляют способы постановки, решения, реализации изобретательской задачи, содержащие элементарные операции, применяемые в определенных типовых ситуациях. Таковы, например, метод смешивания ингредиентов вещества, метод применения гибких промежуточных элементов для соединения технических объектов или их частей и т. д.

Сложные методы содержат элементы нескольких простых. Так, метод поэтапной мозговой атаки содержит элементы обратной мозговой атаки, прямой мозговой атаки, двойной мозговой атаки и мозговой атаки экспертов. Простые и сложные методы изобретательства, как правило, применяются для выполнения определенной стадии или шага творческого процесса изобретателя.

Классификация методов изобретательства по степени использования кибернетической техники:

· решения изобретательских задач человеком;

· методы решения изобретательских задач кибернетическими машинами;

· методы, предназначенные для решения человеком и кибернетическими машинами.

По эвристическому принципу методы решения изобретательских задач можно условно разделить на следующие основные виды:

· методы эвристической аналогии;

· эвристического комплекса;

· эвристического разделения и редукции, (редукция это упрощение, сведение сложного к более простому, обозримому, понимаемому, более доступному для анализа или решения; уменьшение, ослабление чего-либо);

· эвристической инверсии;

· методы эвристического комбинирования.

Особое практическое значение для изобретателей имеет классификация задач по эвристическому принципу, облегчающему выбор методов для поиска конкретного решения, но не гарантируют достижения решения в каждом отдельном случае и могут привести к ошибочным результатам.

Так, например, в XVIII веке представляли себе, что условия плавания аэростатов в воздухе имеют полную аналогию с условиями плавания морских судов, поэтому предлагалось много проектов управляемых аэростатов с парусами, веслами и рулями. Эти решения по аналогии успеха не имели.

Методы эвристической аналогии. Основываются на естественном стремлении человека к подражанию. С помощью этих методов изобретательские задачи решаются путем усмотрения аналогичных ситуаций в природе, технике, общественных и других явлениях и использования найденных аналогий для устранения противоречий, создавших проблемную ситуацию.

Древнейшей группой методов аналогии является группа методов аналогии с природой. Природа была учителем изобретателя. Первые орудия труда человек находил непосредственно в природе. Потом он стал познавать свойства объектов природы и использовать их для удовлетворения своих потребностей. Так,

например, некоторые племена Африки используют навоз в качестве связую-

щего материала, а пепел навоза - как белила.

Выявлением и использованием «механизмов природы» занимается наука бионика. Она исследует объекты живого и растительного мира и выявляет принципы их действия и конструктивные особенности, с целью применения этих знаний в науке и технике.

Иллюстрировать это можно:

· по аналогии с кальмаром американские инженеры сконструировали судно, принцип движения которого схож с движением кальмара. Кальмар, как известно, передвигается резкими толчками, выбрасывая назад воду. Новое судно приводится в движение также реактивной отдачей. Пар выталкивает воду из трубы, направленной к корме судна. От этого толчка судно получает импульс. Оставшийся в трубе пар конденсируется, давление в котле падает, и всасывается очередная порция воды. Теперь котел снова готов к рабочему циклу. Разумеется, это лишь грубая схема, сама конструкция несколько сложнее.

Шлюпка с опытным образцом двигателя уступала в скорости пешеходу. Но не следует забывать о достоинствах - у такого двигателя нет движущихся частей (Судно-кальмар. - Социалистическая Индустрия, 27.03.75).

· Перистальтический насос - аналог кишечника живого организма. Этот насос предназначен для перекачивания пульпы - вязкого вещества и абразивных пульпообразных сред. Насос содержит шланг (гибкий цилиндр), расположенный в подковообразном корпусе, и три ролика, закрепленные на роторе. При вращении ротора ролики поочередно подводятся к шлангу, постепенно пережимая его и прокатываясь по корпусу. При сплющивании шланга ролик передвигает впереди себя перекачиваемую среду. Гибкий шланг позади ролика восстанавливает свою первоначальную форму и всасывает новую порцию жидкости за счет создаваемого разряжения. Затем подходит следующий ролик и вновь пережимает шланг, перекатываясь по корпусу. При вращении роторов все процессы в насосе повторяются [Изобретатель и Рационализатор, № 7, 1987, с.16].

· По аналогии с принципом встряхивания пляжного коврика (резкое волнообразное движение) разработан фильтр. Удаление осадка в нем производится путем нанесения удара "в противофазе".

Основная и довольно часто встречающаяся ошибка при использовании методов эвристической аналогии это слепое использование аналогии. Сделаем так, как это делает человек. Скопируем эти действия и заменим человека роботом. Как правило, такая тактика обречена на провал.

Как же следует использовать аналогию.

1. Выяснить основные принципы и конструктивные особенности исследуемого объекта.

2. Выявить ведущую область техники по функции, которую выполняет этот объект.

3. Воспроизвести основной принцип и конструктивные особенности, используя опыт ведущих областей, на имеющихся элементах, материалах и технологиях. При этом что-то нужно будет придумать новое, учитывая недостатки прототипа.

Таким образом, появится новое конкурентоспособное изделие.

Методы эвристической инверсии. Методы этой группы предполагают поиск решений изобретательских задач в направлениях, противоположных традиционным, в инвертировании технического объекта, изменении расположения элементов объекта, уравновешивании нежелательных факторов средствами противоположного действия.

Инверсии можно подвергать сами технические объекты, их элементы, структуру, агрегатное состояние, форму, параметры движения.

Метод инверсии агрегатного состояния веществ применяется с целью достижения технического эффекта путем преобразования агрегатного состояния веществ. Этот метод позволил изобрести холодильные компрессоры, ледогенератор, ингалятор, пульверизатор.

Метод инвертирования заключается в изменении расположения в простран-

стве традиционного технического объекта (нижней частью вверх или набок), превращении объектов горизонтального типа в объекты вертикальной композиции, перестановке элементов технического объекта в обратном порядке.

Примеры методов эвристической инверсии приведены ниже:

· спортсмены тренируются, бегая по беговой дорожке на стадионе. Можно использовать для этого движущиеся беговые дорожки и тренажеры, в которых можно задавать скорость движения ленты, ее наклон и другие параметры.

· Устройство для тренировки пловца.

Пловец на месте, а движется вода (рис. 3.3).

· Методом инверсии формы традиционной поперечной пилы были изобретены циркулярная пила и ее разновидности - лобзик, ленточная пила, ножовка, бугельная пила, лучковая пила.

Аналогично рассмотренным примерам сконструирован эскалатор (человек стоит, а лестница движется) и многое другое.

Инверсии могут быть: функциональными, структурными, параметрическими, инверсные связи, инверсия пространства, инверсия времени

Функциональная инверсия. Сделать функцию или действие обратным. Нагревание - охлаждение, притягивание - отталкивание, строить - ломать и т.д.

Примеры функциональной инверсии:

· обычно траву сначала косят, а потом сушат, выбирая для этого самые жаркие и сухие дни. А что если делать на оборот - сначала сушить, причем как можно быстрее, а потом косить? Голландские специалисты сконструировали машину, которая довольно быстро подсушивает траву, обрабатывая ее паром при температуре 300°С. Ширина захвата машины 6 метров, производительность 40 т/час.

· В печи-гриле вертится приготавливаемая пища, например, курица. Разработан гриль, где приготавливаемая пища неподвижна, а вокруг нее вращаются горячие потоки воздуха.

Структурная инверсия. В понятие структуры входит состав системы и ее внутреннее устройство. Много - мало элементов, однородные - разнородные элементы, сплошная - дискретная структура, монолитная - дисперсная - пустая, статичная - динамичная структура, линейная - нелинейная, иерархическая - одноуровневая и т.п.

Примеры структурной инверсии:

· электронная и радио аппаратура ранее имела платы со многими элементами (транзисторы, резисторы, конденсаторы, катушки индуктивности, соединительные провода и т.п.), которые в дальнейшем были заменены на микросхемы, а затем и на процессоры. Процессор заменил многие элементы.

· Суда, как правило, имеют постоянную (статическую) структуру: сухогруз, танкер и т.д. Разработана модульная (динамичная) конструкция судна, которая имеет носовую и кормовую части (оконечности), а в середину (среднюю часть корпуса) может помещаться любой модуль [Нарусбаев А.А. Судостроение - XXI век. - Л.: Судостроение, 1988, с. 70-74.]. Таким образом, собираются транспортные суда различного назначения. Модульные суда строили в США на Великих озерах.

Аналогичное решение, еще раньше, было предложено для грузовиков. Еще более ранние аналоги - буксир и различные баржи; паровоз и различные вагоны

Параметрическая инверсия. Противоположные параметры. Проводник - диэлектрик, длинный - короткий, темный - светлый, твердый - мягкий.

Примеры параметрической инверсии:

· предложили трудно деформируемые и легко окисляющиеся металлы и сплавы ковать в вакууме, и при этом обрабатывающий инструмент и заготовку не нагревать, а охлаждать от 0°С до порога хладноломкости [Изобретатель и Рационализатор, № 2, 1979, МИ 0254].

· Изменение размера детали при токарной обработке обычно выполняют путем контроля размера изделия. Если контролировать расстояние между щупом и резцом, то можно гарантировать абсолютно точное изготовление деталей. Этот принцип лег в основу новых прецизионных токарных станков, созданных в Швейцарии. При обработке на них изделий с припуском 20-30 микрон не требуется последующее шлифование.

Инверсные связи. Возможные состояния системы относительно внутренних и внешних связей. Есть связь - нет связи. Положительная связь - отрицательная связь.

Примеры инверсионных связей:

· соединять - разъединять (отключать). На этом принципе построены многие средства связи, например, телефонная связь.

· Отрицательная и положительная обратная связь используется в системах автоматического управления.

Инверсия пространства. Изменение положения в пространстве на 90° и 180°.

В качестве примера рассмотрим положениеветряного электрического генератора.