Белки. Классификация

Креатинфосфокиназа - фермент, участвующий в регенерации АТФ при мышечном сокращении, состоит из 2 субъединиц - В (brain) и М (muscle) в разных сочетаниях: ВВ, ВМ, ММ.Всего 3 изофермен-

КЛАССИФИКАЦИЯ БЕЛКОВ

А. П О ФУНКЦИИ

См выше "Функции белков"

Б . П О СТРОЕНИЮ

1. По форме молекулы:

Глобулярные – соотношение про-

дольной и поперечной осей составляет

<10 и в большинстве случаев не более 3-4. Они характеризуются компактной ук-

ладкой полипептидных цепей. Например: инсулин, альбумин, глобулины плазмы крови.

Фибриллярные – соотношение осей >10. Они состоят из пучков полипептидных цепей, спиралью навитых друг на друга и связанные между собой поперечными ковалентными и водородными связями. Выполняют защитную и структурную функции.

Например: кератин, миозин, коллаген, фибрин.

2. По количеству белковых цепей в одной молекуле

мономерные – имеют одну субъединицу (протомер)

полимерные – имеют несколько субъединиц.

Например, гемоглобин (4 субъединицы), лактатдегидрогеназа (4 субъединицы), креатинфосфокиназа

(2 субъединицы), РНК-полимераза E.coli (5 цепей), аспартаткарбамоил-трансфераза (12 протоомеров), пируватдегидрогеназа (72 цепи).

3. По химическому составу:

Простые – содержат в составе только аминокислоты Сложные – кроме аминокислот имеются небелковые компоненты

П РОСТЫЕ БЕЛКИ

Структура представлена только полипептидной цепью (альбумин, инсулин).

Однако необходимо понимать, что многие простые белки (например, альбумин) не

существуют в „чистом" виде, просто связи с небелковой группой слабые.

Альбумины

Белки массой ММ=40кД, имеют кислые свойства и отрицательный заряд при физиологических рН, т.к. содержат много глутаминовой кислоты. Легко адсорбируют

полярные и неполярные молекулы, является в крови переносчиком многих веществ

Глобулины – ММ>100 кД, слабокислые или нейтральные, поэтому они слабо гидратированы, менее устойчивы и легче осаждаются, что используется в клиниче-

ской диагностике в „осадочных" пробах (тимоловая, Вельтмана). Часто содержат уг-

леводные компоненты. Некоторые способны к связыванию определенных веществ: трансферрин (переносчик Fe), церулоплазмин (переносчик Си), гаптоглобин (пере-

носчик гемоглобина), гемопексин (переносчик тема). При электрофорезе разделяют-

ся, как минимум, на 4 фракции а1, а2, в и у.

Гистоны

Белки массой ММ=24 кД. Обладают выраженными основными свойствами, т.е. при физиологических рН заряжены положительно и, поэтому связываются с ДНК.

Существуют 5 типов гистонов:

Н1 – очень богат Лиз (29%),

Н2а – умеренно богат Лиз (11%)

и Apr (9,5%),

H2b – умеренно богат Лиз (16%)

и Apr (6,5%),

НЗ – умеренно богат Лиз (10%) и

Н4 – умеренно богат Лиз (11%) и

Радикалы аминокислот в составе

гистонов могут быть ферментативно метилированы, ацетилированы или фосфо-

рилированы. Это изменяет суммарный

заряд и другие свойства белков.

Функция:

1. Регулируют активность генома, а именно

препятствуют транскрипции,

2. Структурная – стабилизируют простран-

ственную структуру ДНК.

Гистоны образуют нуклеосомы (укорочение в 7 раз), далее суперспираль и „суперсу-

перспираль". Тем самым они участвуют в плотной упаковке ДНК при формировании

хромосом. Благодаря гистонам размеры ДНК

уменьшаются в тысячи раз: ведь длина ДНК достигает 6-9 см (10-1 ), а размеры хромосом –

всего несколько микрометров (10-6 )

Протамины

Коллаген

Фибриллярный белок с уникальной структурой. Обычно содержит моносахаридные (галактоза) и дисахаридные (галактоза-глюкоза) остатки, соединенные с ОН-

группами некоторых остатков гидроксилизина. Составляет основу межклеточного

вещества соединительной ткани сухожилий, кости, хряща, кожи, но имеется, конечно, и в других тканях. Полипептидная

цепь коллагена включает 1000 амино-

кислот и состоит из повторяющегося триплета [Гли-А-В], где А и В – любые,

кроме глицина аминокислоты. В основ-

ном это аланин, его доля составляет 11%, доля пролина и гидроксипролина –

21%. Таким образом, на оставшиеся

аминокислоты приходится всего 33%. Структура пролина и гидроксипролина

не позволяет образовать а-спиральную

структуру, из-за этого образуется левозакрученная спираль, где на один виток

приходится 3 аминокислотных остатка. Гидроксилирование пролина осуществляет фермент пролилгидроксилаза, железо-содержащий фермент, для его полноценной работы необходим витамин С (аскорбиновая кислота). Недостаточность аскорбиновой кислоты в пище обуславливает возникновение цинги. Приматы и морские свинки утратили способность синтезировать аскорбиновую кислоту и, поэтому, должны получать ее с пищей. Являясь сильным вос-

становительным агентом, аскорбиновая кислота предохраняет от инактивации пролилгидроксилазу, поддерживая восстановленное состояние атома железа в ферменте. Коллаген, синтезированный в отсутствие аскорбиновой кислоты, оказывается недогидроксилированным и не может образовывать нормальные по структуре волокна, что приводит к поражению кожи и ломкости сосудов.

Молекула коллагена построена из 3 полипептидных цепей, сплетенных между собой в плотный жгут – тропоколлагена (длина=ЗОО нм, d=1,6 нм). Полипептидные

цепи прочно связаны между собой через ε-аминогруппы остатков лизина. Тропокол-

лаген формирует крупные коллагеновые фибриллы (d=10-300 нм). Фибриллы очень прочны, они прочнее стальной проволоки равного сечения. Поперечная исчерчен-

ность фибриллы обусловлена смещением молекул тропоколлагена друг относи-

тельно друга на 1/4 их длины.

В коже фибриллы образуют нерегулярно сплетенную и очень густую сеть –

выделанная кожа представляет собой почти чистый коллаген.

Время полужизни коллагена исчисляется неделями и месяцами. Ключевую роль в его обмене играет коллагеназа, расщепляющая тропоколлаген на 1/4 расстояния с С-конца между Гли и Лей.

В результате распада коллагена образуется гидроксипролин. При поражении

соединительной ткани (болезнь Пейджета, гиперпаратиреоидизм) экскреция гидро-

ксипролина возрастает и имеет диагностическое значение. По мере старения организма в тропоколлагене образуется все большее число поперечных связей, что де-

  • 10. Принципы классификации белков. Классификация по составу и биологическим функциям, примеры представителей отдельных классов.
  • 11. Иммуноглобулины, классы иммуноглобулинов, особенности доменного строения и
  • 13. Классификация и номенклатура ферментов, примеры
  • 1. Оксидоредукпшзы
  • 2.Трансферты
  • 3.Гидролазы
  • 4. Лиазы
  • 5. Изомеразы
  • 6. Лигазы (синтетазы)
  • 15. Кинетика ферментативных реакций. Зависимость скорости ферментативной реакции от температуры, рН среды, концентрации ферментов и субстрата. Уравнение Михаэлиса-Ментен, Кm.
  • 16. Кофакторы ферментов: ионы металлов их роль в ферментативном катализе. Коферменты как производные витаминов. Коферментные функции витаминов в6, рр, в2 на примере трансаминаз и дегидрогеназ.
  • 17. Ингибирование активности ферментов: обратимое (конкурентное и неконкурентное)
  • 1. Конкурентное ингибирование
  • 2. Неконкурентное ингибирование
  • 19. Регуляция каталитической активности ферментов ковалентной модификацией путем фосфорилирования и дефосфорилирования.
  • 20. Ассоциация и диссоциация протомеров на примере протеинкиназы а и ограниченный протеолиз при активации протеолитических ферментов как способы регуляции протеолитической активности ферментов.
  • 21. Изоферменты: происхождение, биологическое значение, примеры. Определение ферментов и изоферментного спектра плазмы крови с целью диагностики заболеваний.
  • 22. Энзимопатии наследственные (фенилкетонурия) и приобретенные (цинга). Применение ферментов для лечения болезней.
  • 23. Общая схема синтеза и распада пиримидиновых нуклеотидов. Регуляция. Оротоцидурия.
  • 24. Общая схема синтеза и распада пуриновых нуклеотидов. Регуляция. Подагра.
  • 27. Гибридизация нуклеиновых кислот. Денатурация и ренативация днк. Гибридизация (днк-днк, днк-рнк). Методы лабораторной диагностики, основанные на гибридизации нуклеиновых кислот.
  • 29. Репликация. Принципы репликации днк. Стадии репликации. Инициация. Белки и ферменты, принимающие участие в формировании репликативной вилки.
  • 30. Элонгация и терминация репликации. Ферменты. Асимметричный синтез днк. Фрагменты Оказаки. Роль днк-лигазы в формировании непрерывной и отстающей цепи.
  • 31. Повреждения и репарация днк. Виды повреждений. Способы репарации. Дефекты репарационных систем и наследственные болезни.
  • 32. Транскрипция. Характеристика компонентов системы синтеза рнк. Структура днк-зависимой рнк-полимеразы: роль субъединиц. Инициация процесса. Элонгация, терминация, транскрипция.
  • 33. Первичный транскрипт и его процессинг. Рибозимы как пример каталитической активности нуклеиновых кислот. Биороль.
  • 35. Сборка полипептидной цепи на рибосоме. Образование инициаторного комплекса. Элонгация: образование пептидной связи (реакция транспептидации). Транслокация. Транслоказа. Терминация.
  • 1. Инициация
  • 2. Элонгация
  • 3. Терминация
  • 36. Особенности синтеза и процессинга секретируемых белков (на примере коллагена и инсулина).
  • 37. Биохимия питания. Основные компоненты пищи человека, их биороль, суточная потребность в них. Незаменимые компоненты пищи.
  • 38. Белковое питание. Биологическая ценность белков. Азотистый баланс. Полноценность белкового питания, нормы белка в питании, белковая недостаточность.
  • 39. Переваривание белков: протеазы жкт, их активация и специфичность, оптимум рН и результат действия. Образование и роль соляной кислоты в желудке. Защита клеток от действия протеаз.
  • 40. Всасывание продуктов переваривания. Транспорт ак в клетки кишечника. Особенности транспорта ак в гепатоцитах. Y-глутамильный цикл. Нарушение переваривания и всасывания ак.
  • 42. Минеральные вещества пищи, макро- и микроэлементы, биологическая роль. Региональные патологии, связанные с недостатком микроэлементов.
  • 43. Биологические мембраны, строение, функции и общие свойства: жидкостность, поперечная ассиметрия, избирательная проницаемость.
  • 1. Структура и свойства липидов мембран
  • 2. Трансмембранная асимметрия липидов
  • 3. Жидкостностъ мембран
  • 4. Функции мембранных липидов
  • 45. Механизм переноса веществ через мембраны: простая диффузия, пассивный симпорт и антипорт, активный транспорт, регулируемые каналы. Мембранные рецепторы.
  • 1. Первично-активный транспорт
  • 2. Вторично-активный транспорт
  • 46. Эндергонические и экзергонические реакции живой клетки. Макроэргические соединения, определение, пример.
  • 4. Сопряжение экзергонических и эндергонических процессов в организме
  • 2. Цепь переноса электронов от nadh и fadh2 на кислород
  • 50. Образование активных форм кислорода(синглетный кислород, пероксид водорода, гидроксильный радикал). Место образоваия, схемы реакций. Физиологическая роль афк.
  • 51. Механизм повреждающего действия активных форм кислорода на клетки (пол, окисление белков и нуклеиновых кислот). Примеры реакций.
  • 1. Строение пируватдегидрогеназного комплекса
  • 2. Окислительное декарбоксилирование пирувата
  • 3. Связь окислительного декарбоксилирования пирувата с цпэ
  • 53. Цикл лимонной кислоты: последовательность реакций и характеристика ферментов. Роль цикла в метаболизме.
  • 57. Аэробный гликолиз. Последовательность реакций до образования пирувата (аэробный гликолиз). Использование глюкозы для синтеза жиров. Энергетический эффект аэробного распада глюкозы.
  • 1. Этапы аэробного гликолиза
  • 2. Реакции аэробного гликолиза
  • 1. Реакции анаэробного гликолиза
  • 60. Гликоген, биологическое значение. Биосинтез и мобилизация гликогена. Регуляция синтеза и распада гликогена. Обмен гликогена в анте- и неонатальном периоде.
  • 61. Наследственные нарушения обмена моносахаридов и дисахаридов: галактоземия, непереносимость фруктозы и дисахаридов, эссенциальная фруктоземия. Гликогенозы и агликогенозы.
  • 62. Липиды. Общая характеристика. Биологическая роль. Классификация липидов. Высшие жирные кислоты, особенности строения. Полиеновые жирные кислоты. Триацилглицеролы.
  • 65. Депонирование и мобилизация жиров в жировой ткани, физиологическая роль этих процессов. Роль инсулина, адреналина и глюкагона в регуляции метобализма жира.
  • 67. Биосинтез жирных кислот. Основные стадии процесса. Регуляция обмена жирных кислот.
  • 69. Холестерин. Пути поступления, использования и выведения из организма. Уровень холестерина в сыворотке крови. Биосинтез холестерина, его этапы. Регуляция синтеза.
  • 74. Непрямое дезаминирование аминокислот. Схема процесса, субстраты, ферменты, кофакторы.
  • 1. Синтез и биологическая роль серотонина
  • 1. Окислительное дезаминирование
  • 2. Непрямое дезаминирование (трансдезаминирование)
  • 3. Неокислительное дезамитровате
  • 1. Метаболизм феиилаланина
  • 2. Особенности обмена тирозина в разных тканях
  • 3. Заболевания, связанные с нарушением обмена фенилаланина и тирозина
  • 1. Классификация гормонов по химическому строению
  • 2. Классификация гормонов по биологическим функциям
  • 3. Передача сигналов через рецепторы, сопряжённые с ионными каналами
  • 1. Гормон роста, пролактин
  • 2. Тиреотропин, лютеинизирующий гормони фолликулостимулирующий гормон
  • 3. Группа гормонов, образующихсяиз проопиомеланокортина
  • 1. Синтез и секреция антидиуретического гормона
  • 2. Механизм действия
  • 3. Несахарный диабет
  • 1. Механизм действия альдостерона
  • 2. Роль системы ренин-ангиотензин- альдостерон в регуляции водно-солевого обмена
  • 3. Восстановление объёма крови при обезвоживании организма
  • 4. Гиперальдостеронтм
  • 1. Синтез и секреция птг
  • 2. Роль паратгормона в регуляции обмена кальция и фосфатов
  • 3. Гиперпаратиреоз
  • 4. Гипопаратиреоз
  • 1. Строение и синтез кальцитриола
  • 2. Механизм действия кальцитриола
  • 3. Рахит
  • 2. Биологические функции инсулина
  • 3. Механизм действия инсулина
  • 1. Изменения метаболизма в печени в абсорбтивном периоде
  • 2. Изменения метаболизма в адипоцитах
  • 3. Изменение метаболизма в мышцах в абсорбтивном периоде
  • 1. Изменения метаболизма в печени
  • 2. Изменения метаболизма в жировой ткани
  • 1. Инсулинзависимый сахарный диабет
  • 2. Инсулинонезависимый сахарный диабет
  • 1. Симптомы сахарного диабета
  • 2. Острые осложнения сахарного диабета. Механизмы развития диабетической комы
  • 3. Поздние осложнения сахарного диабета
  • 1. Основные ферменты микросомальных электронтранспортных цепей
  • 2. Функционирование цитохрома р450
  • 3. Свойства системы микросомального окисления
  • До настоящего времен нет единой и стройной классификации, учитывающей различные параметры белков. В основе имеющихся классификаций обычно лежит один признак. Так, белки можно классифицировать:

    По форме молекул (глобулярные или фибриллярные);

    По молекулярной массе (низкомолекулярные, высокомолекулярные и др.);

    По химическому строению (наличие или отсутствие небелковой части);

    По выполняемым функциям (транспортные, защитные, структурные белки и др.);

    По локализации в клетке (ядерные, цито-плазматические, лизосомальные и др.);

    По локализации в организме (белки крови, печени, сердца и др.);

    По возможности адаптивно регулировать количество данных белков: белки, синтезирующиеся с постоянной скоростью (конститутивные), и белки, синтез которых может усиливаться при воздействии факторов среды (индуцибельные);

    По продолжительности жизни в клетке (от очень быстро обновляющихся белков, с Т 1/2 менее 1 ч, до очень медленно обновляющихся белков, Т 1/2 которых исчисляют неделями и месяцами);

    По схожим участкам первичной структуры и родственным функциям (семейства белков).

    Классификация белков по химическому строению

    1. Простые белки

    Некоторые белки содержат в своём составе только полипептидные цепи, состоящие из аминокислотных остатков. Их называют "простые белки". Примером простых белков - гистоны; в их составе содержится много аминокислотных остатков лизина и аргинина, радикалы которых имеют положительный заряд.

    2. Сложные белки

    Очень многие белки, кроме полипептидных цепей, содержат в своём составе небелковую часть, присоединённую к белку слабыми или ковалентными связями. Небелковая часть может быть представлена ионами металлов, какими-либо органическими молекулами с низкой или высокой молекулярной массой. Такие белки называют "сложные белки". Прочно связанная с белком небелковая часть носит название простетической группы.

    Простетическая группа может быть представлена веществами разной природы. Например, белки, соединённые с гемом, носят название гемопротеины. В состав гемопротеинов, кроме уже рассмотренных выше белков гемоглобинов и миоглобина, входят ферменты - цитохромы, каталаза и пероксидаза. Гем, присоединённый к разным белковым структурам, выполняет в них характерные для каждого из белков функции (например, в составе гемоглобина переносит О 2 , а в составе цитохромов - электроны).

    Белки, соединённые с остатком фосфорной кислоты, называют фосфопротеинами. Фосфорные остатки присоединяются сложноэфирной связью к гидроксильным группам серина, треонина или тирозина при участии ферментов, называемых протеинкиназами.

    В состав белков часто входят углеводные остатки, придающие белкам дополнительную специфичность и часто уменьшающие скорость их ферментативного протеолиза. Такие белки носят название гликопротеинов. Многие белки крови, а также рецепторные белки клеточной поверхности относят к гликопротеинам.

    Белки, функционирующие в комплексе с липидами, называют липопротеинами, а в комплексе с металлами - металлопротеинами.

    Сложный белок, состоящий из белковой части (апопротеин) и небелковой части (простетическая группа), называют "холопротеин".

    Классификация белков по функциям

    1. Ферменты - специализированные белки, ускоряющие течение химических реакций. Благодаря ферментам в клетке скорости химических реакций возрастают в миллионы раз. Так как ферменты, как и любые белки, имеют активный центр, они специфически связывают определённый лиганд (или группу похожих лигандов) и катализируют определённый тип химического превращения данной молекулы. Например, протеолитический фермент трипсин разрушает в белках пептидные связи, образованные карбоксильной группой основных аминокислот - аргинина или лизина. Фермент рибонуклеаза расщепляет фосфоэфирную связь между нуклеотидами в полинуклеотидной цепи.

    2. Регуляторные белки - большую группу белковых гормонов, участвующих в поддержании постоянства внутренней среды организма, которые воздействуют на специфические клетки-мишени. Например, гормон инсулин выделяется в кровь при повышении концентрации глюкозы в крови после еды и, стимулируя использование глюкозы клетками, снижает концентрацию глюкозы до нормы, т.е. восстанавливает гомеостаз.

    Кроме того, к регуляторным относят белки, присоединение которых к другим белкам или иным структурам клетки регулирует их функцию. Например, белок кальмодулин в комплексе с четырьмя ионами Са 2+ может присоединяться к некоторым ферментам, меняя их активность.

    Регуляторные ДНК-связывающие белки, присоединяясь в определённые моменты к специфичным участкам ДНК, могут регулировать скорость считывания генетической информации.

    3. Рецепторные белки Сигнальные молекулы (гормоны, нейромедиаторы) действуют на внутриклеточные процессы через взаимодействие со специфическими белками-рецепторами. Так, гормоны, циркулирующие в крови, находят клетки-мишени и воздействуют на них, специфично связываясь с белками-рецепторами, обычно встроенными в клеточную мембрану. Для гидрофобных регуляторных молекул, проходящих через клеточную мембрану, рецепторы локализуются в цитоплазме клеток.

    4. Транспортные белки Многие белки крови участвуют в переносе специфических лигандов из одного органа к другому. Часто в комплексе с белками переносятся молекулы, плохо растворимые в воде. Так, белок плазмы крови альбумин переносит жирные кислоты и билирубин (продукт распада тема), а гемоглобин эритроцитов участвует в переносе О 2 от лёгких к тканям. Стероидные гормоны переносятся в крови специфическими транспортными белками.

    Транспортные белки участвуют также в переносе гидрофильных веществ через гидрофобные мембраны. Так как транспортные белки обладают свойством специфичности взаимодействия с лигандами, их набор в клеточной мембране определяет, какие гидрофильные молекулы могут пройти в данную клетку. С помощью белков-переносчиков в клетку проникают глюкоза, аминокислоты, ионы и другие молекулы.

    5. Структурные белки Некоторые белки, расположенные определённым образом в тканях, придают им форму, создают опору, определяют механические свойства данной ткани. Например, как уже говорилось выше, главным компонентом хрящей и сухожилий является фибриллярный белок коллаген, имеющий высокую прочность. Другой структурный белок (эластин) благодаря своему уникальному строению обеспечивает определённым тканям свойство растягиваться во всех направлениях (сосуды, лёгкие).

    6. Защитные белки Некоторые белки, в частности иммуноглобулины, обладают способностью узнавать и связывать чужеродные молекулы, вирусные частицы и бактерии, в результате чего происходит их нейтрализация. Кроме того, комплекс чужеродной частицы с иммуноглобулином легко узнаётся и уничтожается клетками иммунной системы.

    Защитными свойствами обладают белки свёртывающей системы крови, например фибриноген, тромбин. Они участвуют в формировании тромба, который закупоривает повреждённый сосуд и препятствует потере крови.

    7. Сократительные белки Некоторые белки при выполнении своих функций наделяют клетку способностью либо сокращаться, либо передвигаться. К таким белкам относят актин и миозин - фибриллярные белки, участвующие в сокращении скелетных мышц. Другой пример таких белков - тубулин, из которого построены клеточные органеллы - микротрубочки. Микротрубочки в период деления клетки регулируют расхождение хроматид. Микротрубочки - важные элементы ресничек и жгутиков, с помощью которых клетки передвигаются.

  • I. Таблица 2 . Классификация белков по их структуре.

    Класс белков Характеристика Функция
    Фибриллярные Наиболее важна вторичная структура (третичная почти не выражена) Нерастворимы в воде Отличаются большой механической прочностью Длнные параллельные полипептидные цепи, скрепленные друг с другом поперечными сшивками, образуют длинные волокна или слоистые структуры Выплняют структурные функции. К этой группе относятся, например, коллаген (сухожилия, кости, соединительная ткань), миозин (мышцы), фиброин (шелк, паутина), кератин (волосы, рога, ногти, перья).
    Глобулярные Наиболее важна третичная структура Полипептидные цепи сверуты в компактные глобулы Растворимы Выполняют функци ферментов, антител, и в некоторых случаях гормонов (например, инсулин), а также ряд другихважных функций
    Промежуточные Фибриллярной природы, но растворимы Примером может служить фибриноген, превращающийся в нерастворимый фибрин при свертывании крови

    II. Классификация белков по их составу.


    Простые Сложные

    Состаят только из аминокислот Состоят из глобулярных белков и небелкового

    материала. Небелклвую часть называют

    простетической группой.

    Таблица 3 . Сложные белки.

    Название Простетическая группа Пример
    Фосфопротеины Фосфорная кислота Казеин молока Вителлин яичного желтка
    Гликопротеины Углевод Компоненты мембран Муцин (компонент слюны)
    Нуклеопротеины Нуклеиновая кислота Компоненты вирусов Хромосомы Рибосомы
    Хромопротеины Пигмент Гемоглобин – гем (железосодержащий пигмент) Фитохром (пигмент ратительного происхождения) Цитохром (дыхательный пигмент)
    Липопротеины Липид Компоненты мембран Липопротеины крови ­ – транспортная форма липидов
    Металлопротеины Металл Нитраредуктаза – фермент, катализирующий в растенияхпревращение натрата в нитрит

    III. Таблица 4 . Классификация белков по функциям.

    Класс белков Примеры Локализация/функция
    Структурные белки Коллаген Кератин Эластин Компонент соединительной ькани, костей, сухожилий, хряща Кожа, перья, ногти, волосы, рога Связки
    Ферменты Трипсин Рибулозобифосфат-карбоксилаза Катализирует гидролиз белков Катализирует (присоединение СО 2) при фотосинтезе
    Гормоны Инсулин Глюкагон АКТГ Регулируют обмен глюкозы Стимулирует рост и активность коры надпоченков
    Дыхательные пигменты Гемоглобин Миоглобин Переносит О 2 в крови позвоночных Служит для запасания О 2 в мышцах
    Транспортные белки Альбумин Служит для транспорта жирных кислот и липидов в крови
    Защитные белки Антитела Фибриноген Тромбин Образуют комплексы с чужеродными белками Предшественник фибрина при свертывании крови Участвует в процессе свертывания крови
    Сократительные белки миозин Актин Подвижные нити мышц Неподвижные нити мышц
    Запасные белки Яичный альбумин Казеин Белок яйца Белок молока
    Токсины Змеиный яд Ферменты

    Ферменты (энзимы) – специфические белки, которые присутствуют во всех живых организмах и играют роль биологических катализаторов.

    Ферменты ускоряют реакции без изменений ее общего результата.

    Ферменты высокоспецифичны: каждый фермент катализирует определенный тип химических реакций в клетках. Этим обеспечивается тонкая регуляция всех жизненно важных процессов (дыхание, пищеварение, фотосинтез и др.)

    Пример: фермент уреаза катализирует расщепление лишь мочевины, не оказывая каталитического давления на структурно родственные соединения.

    Активность ферментов ограничена довольно узкими температурными рамками (35-45°С), за пределами которых активность падает и исчезает. Ферменты активны при физиологических значениях Ph, т.е. в слабощелочной среде.

    По пространственной организации ферменты состоят из нескольких доменов и обычно обладают четвертичной структурой.

    Ферменты могут иметь в своем составе и небелковые компоненты. Белковая часть называется апофермент , а небелковая – кофактор (если это простое неорганическое вещество, например Zn 2+ , Mg 2+) или кофермент (коэнзим ) (если речь идет об органических соединениях).

    Предшественниками многих коферментов являются витамины.

    Пример: пантатеновая кислота – предшественник коэнзима А, играющего важную роль в метаболизме.

    В молекулах ферментов имеется так называемый активный центр . Он состоит из двух участков – сорбционного и каталитического . Первый отвечает за связывание ферментов с молекулами субстрата, а второй – за протекание собственно акта катализа.

    В название ферментов присутствует название субстрата, на который воздействует данный фермент, и окончание « - аза».

    ü целлюлоза – катализирует гидролиз целлюлозы до моносахаридов.

    ü протеаза – гидролизирует белки до аминокислот.

    По этому принципу все ферменты разделены на 6 классов.

    Оксидоредуктазы катализируют окислительно-восстановительные реакции, осуществляя перенос атомов Н и О и электронов от одного вещества к другому, окисляя при этом первый и восстанавливая второй. Эта группа ферментов участвует во всех процессах биологического окисления.

    Пример: в дыхании

    АН + В ↔А +ВН (окислительный)

    А + О ↔ АО (восстановительный)

    Трансферазы катализируют перенос группы атомов (метильной, ацильной, фосфатной и аминогруппы) от одного вещества к другому.

    Пример: под давлением фосфотрансфераз происходит перенос остатков фосфорной кислоты от АТФ на глюкозу и фруктозу: АТФ + глюкоза ↔ глюкоза – 6 – фосфат + АДФ.

    Гидролазы ускоряют реакции расщепляют сложных органических соединений на более простые путем присоединения молекул воды в месте разрыва химических связей. Подобное расщепление называется гидролизом .

    Сюда относятся амилаза (гидролизирует крахмал), липаза (расщепляет жиры) и др.:

    АВ + Н 2 О↔АОН + ВН

    Лиазы катализируют негидролитические присоединения к субстрату и отщепление от него группы атомов. При этом может быть разрыв связи С – С, С – N, C – O, C – S.

    Пример: отщепление карбоксильной группы декарбоксилазой

    CH 3 – C – C ↔ CO 2 + CH 3 – C

    Изомеразы осуществляют внутримолекулярные перестройки, т.е. катализируют превращение одного изомера в другой:

    глюкоза – 6 – фофсат ↔ глюкоза – 1 – фосфат

    Липазы (синтетазы) катализируют реакции соединения двух молекул с образованием новых связей С – О, С – S, P – N, C – C, используюя энергию АТФ.

    К липазам относится группа ферментов, катализирующих присоединение остатков аминокислот т-РНК. Эти синтетазы играют важную роль в процессе синтеза белка.

    Пример: фермент валин – т-РНК – синтетаза под его действием образуется комплекс валин-т-РНК:

    АТФ + валин + тРНК↔ АДФ+Н 3 РО 4 +валин-тРНК

    В зависимости от химического состава белки делятся на 3 группы:
    1) простые (протеины);
    2) пептиды;
    3) сложные (протеиды).

    1. Простые белки построены из аминокислот и при гидролизе распадаются только на аминокислоты.

    Протамины и гистоны – содержат до 85% аргинина, поэтому имеют выраженные основные свойства.

    Белок сальмин , полученный из молок семги; клупеин – из молок сельди, скорее относятся к пептидам, т.к. имеют Mr не более 5000 Да.

    Протамины в основном являются белковой частью нуклеотидов (ДНК). Гистоны сосредоточены главным образом в ядре и представляют белковую часть РНК.

    Проламины и глютелины – белки растительного происхождения: зеин получают из кукурузы, глютенин - из пшеницы. Содержат до 25% глу, 10-15% про.

    Альбумины и глобулины – содержатся в сыворотке крови, молоке, яичном белке, мышцах и т.д. Это глобулярные белки, отличающиеся различной растворимостью (альбумины растворяются лучше), по Mr (альбумины имеют молекулярную массу, равную 69000 Да, глобулины - 150000Да).

    2. Пептиды – это низкомолекулярные азотсодержащие соединения, состоящие из остатков аминокислот и имеющие молекулярную массу менее 5000 Да.

    а) с гормональной активностью (АКТГ, окситоцин, вазопрессин и др.);
    б) участвующие в процессах пищеварения (секретин, гастрин);
    в) содержащиеся в α2-глобулярной фракции сыворотки крови (брадикинин, ангиотензин);
    г) нейропептиды (рилизинг-факторы гормонов, например нейрофизины I и II гипоталамуса, способствуют выделению гормонов окситоцина и вазопрессина).

    3. Сложные белки или протеиды – состоят из двух частей: белковой и небелковой. Небелковую часть называют простетической группой, а белковую часть, утратившую простетическую группу, называют апобелком.

    Подробно рассмотрим группу гемопротеидов – это Hb и его производное миоглобин (белок мышечной ткани), хлорофиллсодержащие белки и ферменты (цитохромы b, С, С 1 , каталаза, пероксидаза ). Все они в качестве простетических групп содержат Fe (или Mg)–порфирины, а отличаются белковой частью.

    Структуру гема впервые раскрыл Ненцкий, а его синтез провел Фишер.
    HbA 1 – основной представитель Hb крови взрослого человека;

    Фетальный HbF – в крови новорожденного содержится до 80%, к концу 1-го года жизни он почти полностью заменяется на HbA 1 .

    HbA состоит из 4 ППЦ: 2α–субъединиц и 2β–субъединиц. Четыре субъединицы или протомера ППЦ гемоглобина связаны друг с другом гидрофобными взаимодействиями. Молекула гемоглобина диссоциирует на два димера - αβ и α 1 β 1 . Каждый протомер содержит гем, находящийся в гидрофобной «нише», защищающей его от окисления в ферри-форму. Mr ППЦ гемоглобина равна 64458 (64500) Да.

    В основе простетической группы Нb лежит протопорфирин, у которогоимеются: в положении 1,3,5,8-СН3– метильный R; в положении 2,4 СН 1 =СН– винильнный R; в положении 6,7 СООН–СН 2 –СН 2 – остатки пропионовой кислоты. Железо, входящее в состав гемоглобина, имеет 2 ковалентные и 4 координационные связи; четыре связи образуют связи с атомами азота, пятая координационная связь присоединяет кислород к гему, шестая – связывает гем и ППЦ.

    Структурная организация белков.


    Одной из особенностей белков является их сложная структурная организация. Все белки обладают первичной, вторичной и третичной структурой, а те, которые в своем составе имеют две и больше ППЦ обладают и четвертичной структурой (ЧС).

    Первичная структура белка (ПСБ) – это порядок чередования (последовательность) аминокислотных остатков в ППЦ.
    Даже одинаковые по своей длине и аминокислотному составу белки могут быть разными веществами. Например, из двух аминокислот можно составить 2 разных дипептида:

    При числе аминокислот, равном 20, число возможных комбинаций равно 2x10 18 . А если учесть, что в ППЦ каждая аминокислота может встретиться больше 1 раза, то число возможных вариантов трудно поддается подсчету.
    Определение первичной структуры белка (ПСБ).
    ПСБ белков можно определить с помощью фенилтиогидантоинового метода. Этот метод основан на реакции взаимодействия фенилизотиоцианата (ФИТЦ) с α-АК. В результате образуется комплекс этих двух соединений – ФИТЦ -АК. Например, рассмотрим пептид с целью определения его ПСБ, то есть последовательности соединения аминокислотных остатков.

    ФИТЦ взаимодействует с концевой аминокислотой (а). Образуется комплекс ФТГ-а, его отделяют от смеси и определяют подлинность аминокислоты а. Например, это – асн и т.д. Последовательно отделяют и идентифицируют все остальные аминокислоты. Это трудоемкий процесс. Определение ПСБ белка среднего размера занимает несколько месяцев.
    Приоритет в расшифровке ПСБ принадлежит Сенджеру (1953), который открыл ПСБ инсулина (Лауреат Нобелевской премии). Молекула инсулина состоит из 2х ППЦ – A и B.

    А-цепь состоит из 21 аминокислоты, цепь В – из 30. Между собой ППЦ соединяются дисульфидными мостиками. Число белков, ПСБ которых определена, к настоящему времени достигает 1500. Даже небольшие изменения первичной структуры могут существенно изменить свойства белка. В эритроцитах здоровых людей содержится HbA – при замене в β-цепи HbA, в 6-м положении глу на вал возникает тяжелейшее заболевание серповидно-клеточная анемия, при которой дети, родившиеся с этой аномалией, погибают в раннем возрасте. С другой стороны, возможны варианты изменения ПСБ, которые не сказываются на его физико-химических и биологических свойствах. Например, HbC содержит в 6-м положении b-цепи вместо глу – лиз, HbС почти не отличается по своим свойствам от HbA, а люди, имеющие в эритроцитах такой Hb, практически здоровы.
    Стабильность ПСБ обеспечивается в основном прочными ковалентными пептидными связями и, во вторую очередь, дисульфидными связями.

    Вторичная структура белка (ВСБ).


    ППЦ белков обладают большой гибкостью и приобретают определенную пространственную структуру или конформацию. В белках различают 2 уровня такой конформации – это ВСБ и третичная структура (ТСБ).
    ВСБ – это конфигурация ППЦ, то есть способ ее укладки или скручивания в какую-нибудь конформацию, в соответствии с программой, заложенной в ПСБ.

    Известны три основных типа ВСБ:
    1) α-спираль;
    2) β-структура (складчатый слой или складчатый листок);
    3) беспорядочный клубок.

    α-спираль.


    Ее модель предложена В. Полингом. Она наиболее вероятна для глобулярных белков. Для любой системы наиболее устойчивым является состояние, соответствующее минимуму свободной энергии. Для пептидов такое состояние имеет место, когда CO– и NH– группы соединяются между собой слабой водородной связью. В a-спирали NH– группы 1-го аминокислотного остатка взаимодействует с CO–группой 4-ой по счету аминокислотой. В результате пептидный остов образует спираль, на каждый виток которой приходится 3,6 АК-остатка.

    Закручивание ППЦ происходит по часовой стрелке, то есть у спирали – правый ход. Через каждые 5 витков (18 АК; 2,7 нм) конфигурация ППЦ повторяется.

    Стабилизируется ВСБ в первую очередь водородными связями, и во вторую – пептидными и дисульфидными. Водородные связи в 10-100 раз слабее обычных химических связей; однако за счет их большого количества они обеспечивают определенную жесткость и компактность ВСБ. Боковые R-цепи α-спирали обращены к наружи и расположены по разные стороны от ее оси.

    β-структура.


    Это складчатые участки ППЦ, по форме напоминающие листок, сложенный в гармошку. Слои ППЦ могут быть параллельными, если обе цепи начинаются с N– или С–конца.
    Если смежные цепи в слое ориентированы противоположными концами N–С и С–N, то они называются антипараллельными.

    Образование водородных связей происходит, как и в α-спирали, между CO– и NH– группами.

    Беспорядочный клубок

    Некоторые участки вообще не имеют какой-либо правильной периодической пространственной конфигурации. Их обозначают как беспорядочный клубок, однако такие участки имеют свою фиксированную конформацию, которая определяется аминокислотным составом этого участка, а также ВСБ и ТСБ смежных областей, окружающих беспорядочный клубок. В областях беспорядочного клубка ППЦ могут легко изгибаться и изменять свою конфигурацию, в то время как α-спирали и β-структуры представляют собой довольно жесткие структуры.

    Встречаемость α-спирали и β-структуры в различных белках.

    Третьичная структура белка (ТСБ).

    По форме своих молекул и особенностям пространственной структуры белки делятся на две группы – глобулярные и фибриллярные белки.
    Форма глобулярных белков близка к сферической или эллипсоидной, короткая и длинная ось которых может относиться как 1:50. Фибриллы белков более удлиненной формы. Такой белок может образовывать многомолекулярные нитевидные агрегаты – фибриллы. Фибриллярные белки выполняяют в основном опорную функцию. Функции глобулярных белков более разнообразны. ТС глобулярных белков образуется путем дополнительного скручивания ППЦ, содержащей α-спираль, β-структуру и беспорядочные клубки. ТСБ образуется, главным образом за счет взаимодействия R, основную роль при этом играют дисульфидные связи, слабые водородные, ионные связи и особенно гидрофобные.

    Дисульфидные связи приводят к тому, что удаленные друг от друга области ППЦ сближаются и образуют фиксированные петли.

    Гидрофобные взаимодействия осуществляются за счет сближения R аминокислот с молекулой воды. Неполярные гидрофобные R, отталкиваясь от водного окружения, как бы втягиваются внутрь белковой молекулы, образуя там так называемые «сухие зоны». А гидрофильные R обращены к наружи образующейся глобулы и ориентированы в сторону воды. Все образующиеся химические связи определены аминокислотным составом и их чередованием в ППЦ.

    Таким образом, ТСБ – это компактное расположение или упаковка в пространстве одной или нескольких ППЦ в определенном объеме.

    Все биологические свойства белковой молекулы связаны с сохранностью их ТС, которая называется нативной конфигурацией белка.

    Глобулярная молекула (глобула) не является абсолютно жесткой структурой. Небольшие изменения конфигурации белковых молекул происходят как внутри самой молекулы (как бы пульсация), так и при взаимодействии с другими молекулами и напоминает изменение формы резинового мяча при надавливании.

    Денатурация и ренативация белка

    При разрыве большого числа связей, стабилизирующих белковую молекулу, уникальная для каждого белка конформация нарушается. Такое изменение называется денатурацией . Ее можно вызвать при нагревании белка до 60-80 o С и действии других агентов – детергентов , то есть щелочей, кислот, мочевины, спиртов и т.д. При денатурации растворимость белков ухудшается. Часто белок сворачивается. При денатурации утрачивается биологическая активность белков. В определенных условиях (медленное охлаждение денатурированного нагреванием белка, промывание раствора белка и вымывание из него детергентов) возможна ренативация (ренатурация) , то есть восстановление исходной нативной конформации белка.

    Четвертичная структура белка(ЧСБ).


    Многие белки построены из 2 и более ППЦ, например гексокиназа содержит 2 ППЦ, HbA – 4 ППЦ, ферритин – 24.
    Цепи соединяются между собой нековалентными связями. Например, основной белок эритроцитов Hb состоит из 4-х цепей: 2α и 2β. При сравнительно небольших изменениях окружающей среды Hb может диссоциировать на димеры, затем на мономеры (или протомеры) .

    Димеры и протомеры называются субъединицами . Протомеры – это наименьшие субъединицы. Белки, молекулы которых построены из нескольких ППЦ, называются олигомерами или олигобелками.

    Количество протомеров, способ их соединения и пространственной укладки относительно друг друга называются ЧСБ.

    Белки с Mr больше 50 тыс. Да почти всегда являются олигомерными. ЧСБ является такой специфической уникальной характеристикой данного белка, как и другие уровни структурной организации. При соединении друг с другом протомеры взаимодействуют не любой поверхностью, а определенным участком – контактной поверхностью. Если на одной ППЦ (субъединице) имеется выступ, то на другой в соответственном месте имеется углубление. При этом совпадают разноименно заряженные ионные группы, группы, образованные водородной связью, гидрофобные и гидрофильные участки. Такие участки называются комплементарными . Они подходят друг к другу как ключ к замку. Процесс самосборки олигомерных белков отличается высокой специфичностью. Например , если в растворе наряду с протомерами Hb есть и другие белки, они не образуют соединений с Hb. Чаще всего отдельные субъединицы не обладают биологической активностью, белки приобретают эту способность при соединении протомеров в олигомер.

    Гемоглобинозы


    Биологическая активность белков находится в прямой зависимости от сохранности ПСБ. При замене хотя бы одной аминокислоты могут возникнуть различные патологии. Например, при даже незначительных изменениях в ППЦ Hb возникают аномальные гемоглобинозы. Их около 200. Гемоглобинозы делятся на две основные группы:

    1) гемоглобинопатии;
    2) талассемии.

    Гемоглобинопатии – в их основе наследственное изменение структуры какой-либо цепи Hb. Например, серповидно-клеточная анемия (в основном в странах Южной Америки, Африки, Юго-Восточной Азии). Эритроциты в условиях низкого парциального давления принимают форму серпа. HbS после отдачи О 2 (Полинг и авт.) превращается в плохо растворимую и выпадает в осадок в виде веретенообразных кристаллов, которые деформируют клетку и приводят к массивному гемолизу. Болезнь протекает остро и дети погибают в раннем возрасте. Причиной данной патологии является мутация в молекуле ДНК, кодирующей синтез β-цепи Hb, где происходит замена только 1-ой аминокислоты – глу на вал в 6-м положении. Ежегодно погибает около 1 млн. человек.

    Талассемии – в основе – генетическое нарушение синтеза какой либо ППЦ Hb. При нарушении синтеза β-цепи возникают β-талассемии. Наряду с HbА 1 обр. до 15% HbА 2 и до 60% HbF – происходит гиперплазия и разрушение костного мозга, поражение печени, селезенки, деформация черепа, тяжелая гемолитическая анемия. Эритроциты приобретают форму мишени.

    Основана на различиях по составу или по форме.

    По составу белки делят на две группы:

      Простые белки (протеины) состоят только из аминокислот: протамины и гистоны обладают основными свойствами и входят в состав нуклеопротеидов. Гистоны участвуют в регуляции активности генома. Проламины и глютелины – белки растительного происхождения, составляют основную массу клейковины. Альбумины и глобулины – белки животного происхождения. Богаты ими сыворотка крови, молоко, яичный белок, мышцы.

      Сложные белки (протеиды = протеины) содержат небелковую часть – простетическую группу. Если простетической группой является пигмент (гемоглобин, цитохромы), то это хромопротеиды. Белки, связанные с нуклеиновыми кислотами – нуклеопротеиды. Липопротеины – связаны с каким – либо липидом. Фосфопротеиды – состоят из белка и лабильного фосфата. Их много в молоке, в ЦНС, икре рыб. Гликопротеиды связаны с углеводами и их производными. Металлопротеины – белки, содержащие негеминовое железо, а также образующие координационные решетки с атомами металлов в составе белков – ферментов.

    По форме различают

    Глобулярные белки – это плотно свернутые полипептидные цепи сферической формы, для них важна третичная структура. Хорошо растворимы в воде, в разбавленных растворах кислот, оснований, солей. Глобулярные белки выполняют динамические функции. Например, инсулин, белки крови, ферменты.

    Фибриллярные белки – молекулы вторичной структуры. Они построены из параллельных, сравнительно сильно растянутых пептидных цепей, вытянутой формы, собранные в пучки, образуют волокна (кератин ногтей, волос, паутины, шелка, коллаген сухожилий). Выполняют преимущественно структурную функцию.

    Функции белков:

      Строительная – белки участвуют в образовании клеточных и внеклеточных структур: входят в состав клеточных мембран, шерсти, волос, сухожилий, стенок сосудов и т.д.

      Транспортная – некоторые белки способны присоединять к себе различные вещества и переносить (доставлять) их из одного места клетки в другое, и к различным тканям и органам тела. Белок крови гемоглобин присоединяет кислород и транспортирует его от легких ко всем тканям и органам, а от них в легкие переносит углекислый газ. В состав клеточных мембран входят особые белки, обеспечивающие активный и строго избирательный перенос некоторых веществ и ионов из клетки и в клетку – осуществляется обмен с внешней средой.

      Регуляторная функция – принимают участие в регуляции обмена веществ. Гормоны влияют на активность ферментов, замедляя или ускоряя обменные процессы, изменяют проницаемость клеточных мембран, поддерживают постоянство концентрации веществ в крови и клетках, участвуют в процессе роста. Гормон инсулин регулирует уровень сахара в крови путем повышения проницаемости клеточных мембран для глюкозы, способствует синтезу гликогена, увеличивает образование жиров из углеводов.

      Защитная функция = Иммунологическая. В ответ на проникновение в организм чужеродных белков или микроорганизмов (антигенов) образуются особые белки - антитела, способные связывать и обезвреживать их. Синтез иммуноглобулинов происходит в лимфоцитах. Фибрин, образующийся из фибриногена, способствует остановке кровотечений.

      Двигательная функция. Сократительные белки обеспечивают движение клеток и внутриклеточных структур: образовании псевдоподий, мерцании ресничек, биении жгутиков, сокращении мышц, движении листьев у растений.

      Сигнальная функция. В поверхностную мембрану клетки встроены молекулы белков, способных изменять свою третичную структуру в ответ на действие факторов внешней среды. Так происходит прием сигналов из внешней среды и передача команд в клетку.

      Запасающая функция. В организме могут откладываться про запас некоторые вещества. Например, при распаде гемоглобина железо не выводится из организма, а сохраняется в селезенке, образуя комплекс с белком ферритином. К запасным относятся белки яйца, молока.

      Энергетическая функция. При распаде 1 г белка до конечных продуктов выделяется 17,6 кДж. Распад идет сначала до аминокислот, а потом – до воды, аммиака и углекислого газа. Однако в качестве источника энергии белки используются тогда, когда израсходованы жиры и углеводы.

      Каталитическая функция. Ускорение биохимических реакций под действием белков - ферментов.

      Трофическая. Питают зародыш на ранних стадиях развития и запасают биологически ценные вещества и ионы.

    Липиды

    Большая группа органических соединений, являющихся производными трехатомного спирта глицерина и высших жирных кислот. Поскольку в их молекулах преобладают неполярные и гидрофобные структуры, то они нерастворимы в воде, а растворимы в органических растворителях.