Реактивная тяга. Реактивная сила Уравнения Мещерского и Циолковского

Тяга ракетного двигателя

Создание реактивной тяги есть назначение всякого ракетного двигателя; поэтому величина тяги является важнейшей характеристикой двигателя.

Тяга современных ракетных двигателей колеблется от нескольких килограммов до десятков тонн, в зависимости от назначения и размеров двигателя.

Двигатели тяжелых дальнобойных ракет развивают тягу, превышающую тягу наиболее мощных паровозов, с могучей силой увлекающих за собой железнодорожные составы в тысячи тонн.

Фиг. 7. Принципиальная схема ракетного двигателя.

Как определить величину реактивной тяги? Обратимся для этой цели к фиг. 7, на которой представлена принципиальная схема ракетного двигателя.

Тяга образуется потому, что из двигателя вытекают газы. Чтобы вытолкнуть газы, двигатель должен действовать на них с какой-то силой; обратная сила - сила воздействия газов на двигатель - и есть реактивная тяга. Поэтому направление тяги обратно скорости вытекающих газов, а величина тяги равна силе, с которой выталкиваются газы. Очевидно, что величина этой силы зависит от количества вытекающих газов и их скорости. Механика учит, что эта сила, а следовательно, и сила тяги, равна произведению массы выталкиваемых в секунду газов на скорость их истечения.

Так как масса равна весу, деленному на ускорение земного притяжения (g=9,81 м/сек 2), то для определения силы тяги служит следующая простая формула:

Каждый килограмм вытекающих в секунду газов создает тягу, численно равную, очевидно, 1/10 от скорости истечения. Эта тяга, носящая название удельной тяги или удельного импульса (размерность удельной тяги кг сек/кг ), является основной характеристикой любого ракетного двигателя. Чем больше удельная тяга, т. е. чем большую тягу создает каждый килограмм газа, вытекающего в секунду из двигателя, тем совершеннее двигатель.

В современных ракетных двигателях скорость истечения колеблется от 1500 до 2500 м/сек , вследствие чего удельная тяга равна 150–250 кг сек/кг .

Какими же способами можно увеличить скорость истечения и вместе с нею удельную тягу проектируемого ракетного двигателя?

Скорость истечения газов из двигателя зависит от топлива, давления газов в двигателе и его конструкции.

Влияние топлива на скорость истечения сказывается в основном в том, что скорость истечения тем больше, чем больше теплотворная способность топлива, т. е. тепло, которое выделяет при сгорании каждый килограмм топлива.

Чтобы отчетливее представить себе влияние на скорость истечения теплотворной способности топлива, попробуем повнимательнее присмотреться к явлениям, происходящим в любом ракетном двигателе, т. е. к рабочему процессу двигателя.

Пусть в двигателе произошла химическая реакция (будем считать для определенности - сгорание), в результате которой выделилось какое-то количество тепла.

Вследствие этого газообразные продукты реакции - пары углекислоты, пары воды, азот и др. - сильно нагреваются, так что температура их достигает 2500 °C и более. Мы знаем из физики, что температура газа есть мера скорости движения его молекул; когда газ очень нагрет, то молекулы его движутся с очень большими скоростями. Однако непосредственно эту скорость движения молекул газа использовать для создания реактивной тяги нельзя, потому что молекулы внутри двигателя движутся беспорядочно, неорганизованно, во всех направлениях; имеет место так называемое тепловое движение молекул. Каждая молекула, отражаясь от стенок двигателя, создает, конечно, микроскопическую реактивную силу, но суммарная равнодействующая - результат бесчисленного множества таких молекулярных ударов, равна нулю. Благодаря хаотичности движения молекул давление на все стенки двигателя одинаково и никакого реактивного эффекта не получается.

Чтобы создать реактивную силу, необходимо обеспечить упорядоченное, организованное истечение молекул газа из двигателя в одном направлении; тогда реактивный эффект всех вытекающих молекул суммируется, давая в результате нужную нам реактивную силу. Поэтому всякий ракетный двигатель по идее представляет собой машину для извержения молекул газа с максимально возможной скоростью в одном, общем для всех молекул, направлении, следовательно, машину для преобразования химической энергии топлива сначала в тепловую энергию беспорядочного движения молекул, а затем в скоростную (кинетическую) энергию их упорядоченного истечения из двигателя.

Таким образом первая часть рабочего процесса ракетного двигателя заключается в преобразовании химической энергии топлива в тепловую. Это преобразование осуществляется в ходе химической реакции внутри двигателя, в той его части, которую называют камерой сгорания, и происходит обычно при постоянном давлении.

Вторая часть рабочего процесса двигателя заключается в преобразовании тепловой энергии хаотического движения молекул в скоростную энергию их организованного истечения, т. е. в скоростную энергию реактивной струи газов, вытекающих из двигателя. Это преобразование осуществляется в процессе расширения газов от давления, имеющего место в камере сгорания двигателя, до атмосферного давления, т. е. до давления на выходе из двигателя, и обычно происходит в той его части, которая носит название сопла.

В современных ракетных двигателях указанный выше рабочий процесс происходит непрерывно, хотя возможны двигатели прерывного действия, в которых подача топлива в камеру сгорания и все последующие процессы происходят периодически.

Таким образом общим результатом рабочего процесса ракетного двигателя является преобразование химической энергии топлива в скоростную энергию струи газов, вытекающих из сопла в атмосферу. Однако при этом далеко не вся химическая энергия топлива (теплотворная способность) переходит в скоростную энергию струи, а только определенная часть ее. Чем совершеннее рабочий процесс, тем больше эта полезно используемая часть теплотворной способности топлива. В современных; ракетных двигателях в скоростную энергию струи газов переходит меньше половины тепла, заключенного в топливе. Большая часть (до 2/3) этого тепла представляет собой потери рабочего процесса. Часть тепла теряется из-за неполного сгорания топлива, а другая, большая, теряется вместе с газами, выходящими из двигателя, так как их температура очень высока (1000–1500 °C). Уменьшение этих потерь рабочего процесса приводит к увеличению скорости истечения и, следовательно, увеличению тяги. Однако, как учит термодинамика - наука о преобразовании тепла в работу, - все тепло не может перейти в скоростную энергию газов. Некоторая часть этого тепла представляет собой неизбежные потери.

Теперь ясно, как теплотворная способность топлива влияет на скорость истечения. Чем больше теплотворная способность, тем больше тепловой энергии, при данной степени совершенства рабочего процесса двигателя, переходит в скоростную энергию газов, т. е. тем больше скорость истечения. И физически очевидно, что чем больше скорость теплового движения молекул после сгорания, тем больше и скорость истечения газов из двигателя.

С другой стороны, чем совершеннее рабочий процесс двигателя, тем также больше скорость истечения. Поэтому, например, более удачная конструкция двигателя, в частности, сопла, позволяющая лучше организовать истечение, т. е. добиться, чтобы скорости молекул газа на выходе из двигателя имели одинаковое направление и были большими по величине, также приводит к увеличению тяги.

Такое же влияние оказывает давление газов в камере сгорания двигателя. Чем больше это давление по сравнению с атмосферным, т. е. с давлением газов на выходе из двигателя, тем большая доля тепла переходит в скоростную энергию газов и поэтому больше скорость истечения и тяга двигателя, рассчитанного на это увеличенное давление.

Из всех внешних условий (скорость полета, состояние атмосферы и др.) только атмосферное давление оказывает некоторое, да и то небольшое, влияние на рабочий процесс ракетного двигателя. Эта независимость рабочего процесса от внешних условий является важным свойством ракетного двигателя. Благодаря этому свойству скорость истечения и секундный расход газов, а следовательно, и тяга ракетного двигателя, также остаются постоянными при изменении внешних условий.

Только при изменении атмосферного давления, например с изменением высоты полета, тяга несколько изменяется - с увеличением высоты тяга растет.

Особенно важным является то, что тяга остается постоянной при изменении скорости полета.

Из книги Определение и устранение неисправностей своими силами в автомобиле автора Золотницкий Владимир

Неисправности двигателя Якорь стартера не вращается при включении замка зажигания Неисправности системы пуска Проверить работу стартера одним из трех способов:1. Убедиться в надежности кабельных соединений наконечников на клеммах аккумуляторной батареи. Освободить

Из книги Ремонт японского автомобиля автора Корниенко Сергей

Выхлоп двигателя дымный. В картер двигателя поступает повышенный объем газов Диагностирование двигателя по цвету дыма из выхлопной трубы Сине-белый дым – неустойчивая работа двигателя. Рабочая фаска клапана подгорела. Оценить состояние газораспределительного

Из книги Отечественное ракетное оружие автора Первов Михаил Андреевич

Неисправности двигателя

Из книги Ракеты и полеты в космос автора Лей Вилли

Тряска двигателя

Из книги Грузовые автомобили. Кривошипно-шатунный и газораспределительный механизмы автора Мельников Илья

Перегрев двигателя

Из книги Грузовые автомобили. Системы охлаждения и смазки автора Мельников Илья

КЛАССИФИКАЦИЯ РАКЕТНОГО ОРУЖИЯ БАЛЛИСТИЧЕСКИЕ РАКЕТЫ (СУХОПУТНЫЕ И МОРСКИЕ)Межконтинентальные баллистические ракеты (МБР) Баллистические ракеты подводных лодок (БРПЛ) Баллистические ракеты средней дальности (БРСД) Баллистические ракеты оперативно-тактические и

Из книги Ракетные двигатели автора Гильзин Карл Александрович

Из книги автора

ТАКТИКО-ТЕХНИЧЕСКИЕ ДАННЫЕ РАЗЛИЧНЫХ ТИПОВ РАКЕТ И РАКЕТНОГО ВООРУЖЕНИЯ.

Из книги автора Из книги автора

Крепление двигателя Картер – это основание, на котором крепят основные детали двигателя. Картер изготавливают из алюминиевого сплава. Кривошипной камерой называется место картера, в котором вращается шатун и щеки коленчатого вала. Крепление двигателя к раме или

Из книги автора

Промывка двигателя Если масло в вашем двигателе, после пробега автомобилем нескольких тысяч километров, остается чистым и прозрачным, это должно навести вас на мысль, что масло не слишком качественное и не обладает необходимыми «моющими» свойствами и его необходимо

Из книги автора

2. СВОЙСТВА РАКЕТНОГО ДВИГАТЕЛЯ Основные свойства ракетного двигателя мы уже знаем.Первое свойство заключается в отсутствии специального движителя, назначение которого выполняет сам двигатель. Это оказывается возможным потому, что тяга представляет собой реакцию

Из книги автора

Мощность ракетного двигателя Мощность, развиваемая двигателем, т. е. механическая работа, совершаемая им в единицу времени (секунду), является важнейшей характеристикой любого двигателя. Это и естественно, если иметь в виду, что именно совершение этой механической

Из книги автора

Экономичность ракетного двигателя Наряду с мощностью важнейшей характеристикой каждого двигателя является его экономичность. Если речь идет о тепловом двигателе, то экономичность его определяется расходом топлива на единицу мощности, т. е. на 1 л. с. Экономичный

Реактивная тяга обычно рассматривается как сила реакции отделяющихся частиц. Точкой приложения её считают центр истечения - центр среза сопла двигателя, а направление - противоположное вектору скорости истечения продуктов сгорания (или рабочего тела, в случае не химического двигателя). То есть, реактивная тяга :

Энциклопедичный YouTube

    1 / 3

    ✪ Сохранение импульса: реактивное движение

    ✪ Урок 106. Реактивное движение

    ✪ А правда ли, что...?#4-Реактивная тяга?!

    Субтитры

Реактивное движение в природе

Доказательство

M p ⋅ Δ v → Δ t = − Δ m t Δ t ⋅ u → {\displaystyle m_{p}\cdot {\frac {\Delta {\vec {v}}}{\Delta t}}=-{\frac {\Delta m_{t}}{\Delta t}}\cdot {\vec {u}}}

F → p = m p ⋅ a → = − u → ⋅ Δ m t Δ t {\displaystyle {\vec {F}}_{p}=m_{p}\cdot {\vec {a}}=-{\vec {u}}\cdot {\frac {\Delta m_{t}}{\Delta t}}}

Уравнение Мещерского

Если же на ракету , кроме реактивной силы F → p {\displaystyle {\vec {F}}_{p}} , действует внешняя сила F → {\displaystyle {\vec {F}}} , то уравнение динамики движения примет вид:

M p ⋅ Δ v → Δ t = F → + F → p ⇔ {\displaystyle m_{p}\cdot {\frac {\Delta {\vec {v}}}{\Delta t}}={\vec {F}}+{\vec {F}}_{p}\Leftrightarrow } m p ⋅ Δ v → Δ t = F → + (− u → ⋅ Δ m t Δ t) {\displaystyle m_{p}\cdot {\frac {\Delta {\vec {v}}}{\Delta t}}={\vec {F}}+(-{\vec {u}}\cdot {\frac {\Delta m_{t}}{\Delta t}})}

Формула Мещерского представляет собой обобщение

    Любую задачу в механике можно решить с помощью законов Ньютона. Однако применение закона сохранения импульса во многих случаях значительно упрощает решение. Большое значение имеет закон сохранения импульса для исследования реактивного движения.

Какое движение называется реактивным?

Под реактивным движением понимают движение тела, возникающее при отделении некоторой его части с определенной скоростью относительно тела, например при истечении продуктов сгорания из сопла реактивного летательного аппарата. При этом появляется так называемая реактивная сила, сообщающая телу ускорение.

Наблюдать реактивное движение очень просто. Надуйте детский резиновый шарик и отпустите его. Шарик стремительно взовьется вверх (рис. 5.4). Движение, правда, будет кратковременным. Реактивная сила действует лишь до тех пор, пока продолжается истечение воздуха.

Рис. 5.4

Главная особенность реактивной силы состоит в том, что она возникает без какого-либо взаимодействия с внешними телами. Происходит лишь взаимодействие между ракетой и вытекающей из нее струей вещества.

Сила же, сообщающая ускорение автомобилю или пешеходу на земле, пароходу на воде или винтовому самолету в воздухе, возникает только за счет взаимодействия этих тел с землей, водой или воздухом.

При истечении продуктов сгорания топлива они за счет давления в камере сгорания приобретают некоторую скорость относительно ракеты и, следовательно, некоторый импульс. Поэтому в соответствии с законом сохранения импульса сама ракета получает такой же по модулю импульс, но направленный в противоположную сторону.

Масса ракеты с течением времени убывает. Ракета в полете является телом переменной массы. Для расчета ее движения удобно применить закон сохранения импульса.

Уравнение Мещерского

Выведем уравнение движения ракеты и найдем выражение для реактивной силы. Будем считать, что скорость вытекающих из ракеты газов относительно ракеты постоянна и равна . Внешние силы на ракету не действуют: она находится в космическом пространстве вдали от звезд и планет.

Пусть в некоторый момент времени скорость ракеты относительно инерциальной системы, связанной со звездами, равна (рис. 5.5, а), а масса ракеты равна М. Через малый интервал времени Δt масса ракеты станет равной

где μ - расход топлива(1).

Рис. 5.5

За этот лее промежуток времени скорость ракеты изменится на Δ и станет равной 1 = + Δ. Скорость истечения газов относительно выбранной инерциальной системы отсчета равна + (рис. 5.5,б), так как до начала сгорания топливо имело ту же скорость, что и ракета.

Запишем закон сохранения импульса для системы ракета - газ:

Раскрыв скобки, получим:

Слагаемым μΔtΔ можно пренебречь по сравнению с остальными, так как оно содержит произведение двух малых величин (это величина, как говорят, второго порядка малости). После приведения подобных членов будем иметь:

Это одно из уравнений Мещерского(2) для движения тела переменной массы, полученное им в 1897 г.

Если ввести обозначение р = -μ, то уравнение (5.4.1) совпадет по форме записи со вторым законом Ньютона. Однако масса тела М здесь не постоянна, а убывает со временем из-за потери вещества.

Величина р = -μ носит название реактивной силы. Она появляется вследствие истечения газов из ракеты, приложена к ракете и направлена противоположно скорости газов относительно ракеты. Реактивная сила определяется лишь скоростью истечения газов относительно ракеты и расходом топлива. Существенно, что она не зависит от деталей устройства двигателя. Важно лишь, чтобы двигатель обеспечивал истечение газов из ракеты со скоростью при расходе топлива μ. Реактивная сила космических ракет достигает 1000 кН.

Если на ракету действуют внешние силы, то ее движение определяется реактивной силой и суммой внешних сил. В этом случае уравнение (5.4.1) запишется так:

Принцип реактивного движения основан на том, что истекающие из реактивного двигателя газы получают импульс. Такой же по модулю импульс приобретает ракета.

Вопросы для самопроверки

(1) Расходом топлива называется отношение массы сгоревшего топлива ко времени его сгорания.

(2) Мещерский И. В. (1859-1935) - профессор Петербургского политехнического института. Его труды по механике тел переменной массы стали теоретической основой ракетной техники.

    Реактивная сила - см. Тяга двигателя. Авиация: Энциклопедия. М.: Большая Российская Энциклопедия. Главный редактор Г.П. Свищев. 1994 … Энциклопедия техники

    реактивная сила - — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN reaction force …

    реактивная сила - atoveikio jėga statusas T sritis Standartizacija ir metrologija apibrėžtis Veikiamojo kūno atsakomojo poveikio jėga, nukreipta į veikiantįjį kūną. atitikmenys: angl. counter acting force; reactive force vok. Gegenwirkungskraft, f; Rückstosskraft … Penkiakalbis aiškinamasis metrologijos terminų žodynas

    Реактивная сила - реактивная тяга, сила тяги реактивного двигателя (См. Реактивный двигатель); см. Реактивная тяга …

    Реактивная сила — см. Тяга двигателя … Энциклопедия «Авиация»

    реактивная сила ЖРД (камеры ЖРД) - реактивная сила двигателя (камеры) Равнодействующая газо и гидродинамических сил, действующих на внутренние поверхности ЖРД (камеры ЖРД) при истечении продуктов сгоранияю [ГОСТ 17655 89] Тематики двигатели ракетные жидкостные Синонимы реактивная… … Справочник технического переводчика

    Реактивная тяга - (реактивная сила) сила реакции (отдачи) струи, создаваемая в результате истечения газов (или другого рабочего тела) из сопла реактивного двигателя. Реактивная тяга приложена непосредственно к корпусу ракетного двигателя и без каких либо… … Морской словарь

    РЕАКТИВНАЯ ТЯГА - (реактивная сила) сила реакции (отдачи) струи рабочего тела (напр., газа), вытекающей из сопла реактивного двигателя и приводящей в движение устройство с двигателем в сторону, противоположную направлению истечения рабочего тела … Большой Энциклопедический словарь

    РЕАКТИВНАЯ ТЯГА - (реактивная сила) сила реакции (отдачи) струи рабочего тела, вытекающей из сопла реактивного двигателя (см.), приводящая в движение двигатель и связанный с ним аппарат в направлении, противоположном направлению реактивной струи. Принцип… … Большая политехническая энциклопедия

    Реактивная тяга - реактивная сила, сила реакции (отдачи) струи газов (или др. рабочего тела (См. Рабочее тело)), вытекающей из сопла реактивного двигателя (См. Реактивный двигатель). Р. т. равнодействующая сил давления рабочего тела на ограничивающие его… … Большая советская энциклопедия

Одно из важнейших практических применений закон сохранения количества движения нашел при решении задачи о движении тел переменной массы. Это решение становится особенно простым в том случае, когда присоединение (или отделение) частиц к движущемуся телу происходит так же, как при неупругом ударе,- силы

Рис. 4.22 (см. скан)

действуют только во время контакта между частицами или телами. Именно так взаимодействуют продукты сгорания топлива с ракетой. Решим задачу для Ллучая движения ракеты.

Сначала обратим внимание на некоторые особенности выброса продуктов сгорания из двигателя ракеты.

Если в некоторый момент времени ракета движется со скоростью относительно Земли (рис. 4.22, а), то вместе с ней с такой же скоростью движется и та часть топлива, которая должна будет сгореть в ближайшую секунду. Во время горения продукты сгорания этой части топлива получают дополнительную скорость и относительно самой ракеты (рис. 4.22, б). Относительно Земли они имеют скорость Сама ракета при этом получает тоже некоторое приращение скорости. После выброса продукты сгорания перестают взаимодействовать с ракетой. Это дает право рассматривать выброшенные продукты сгорания и ракету как систему из двух тел, взаимодействующих между собой вовремя горения так же, как при неупругом ударе.

Применим к расчету движения этой системы закон сохранения количества движения.

Допустим, что реактивный двигатель ракеты каждую секунду выбрасывает массу продуктов сгораниятоплива. Продукты сгорания во время выброса получают дополнительную скорость и относительно ракеты. Скорость ракеты до сгорания очередной порции топлива Масса ракеты после сгорания этой порции Определим скорость ракеты после сгорания этой порции топлива и рассчитаем силу тяги двигателя ракеты. При этом будем считать, что сопротивление воздуха и сила тяжести отсутствуют, т. е. наша система тел изолирована.

Для составления уравнения закона сохранения количества движения в качестве первого выберем момент времени до выбрасывания очередной порции газа. В качестве второго - момент времени после выбрасывания этой порции. За положительное направление векторов выберем направление движения ракеты. Так как направления скоростей известны, то в алгебраических уравнениях их знаки запишем открыто, т. е. будем понимать под обозначениями только их модули.

До выброса газов ракета и топливо по условию имеют одинаковую скорость Количество движения ракеты в этот момент будет Количество движения топлива, которое должно сгореть в ближайшую секунду, будет Полное количество движения системы для этого момента времени равно

После сгорания очередной порции топлива ракета будет иметь какую-то неизвестную пока скорость относительно Земли. Количество движения ракеты станет равным Выброшенные газы, получившие скорость и относительно ракеты, будут иметь относительно Земли скорость Количество движения этих газов станет равным Полное количество движения системы для этого момента времени равно

Можно написать уравнение закона сохранения количества движения, так как по условию наша система изолирована:

Раскроем скобки и приведем подобные члены:

Отсюда для скорости ракеты после сгорания очередной порции топлива получаем выражение:

Для расчета силы тяги двигателя перепишем второе уравнение в следующем виде:

В правой части этого уравнения стоит изменение количества движения ракеты за одну секунду. Но по второму закону Ньютона изменение количества движения тела возникает только в результате действия импульсов каких-то сил. Следовательно, уравнение говорит о том, что выбрасывание газов из двигателя сопровождается появлением некоторых сил, действующих на ракету. Эти силы возникают при изменении массы движущегося тела и получили название реактивных сил.

Для определения реактивных сил, действующих на ракету, сопоставим последнее выражение с уравнением второго закона Ньютона, записанным для массы ракеты Обозначим реактивную силу тяги буквой и положим время Из сопоставления формул видно, что правые части сравниваемых уравнений одинаковы. Следовательно, и левые части этих уравнений должны быть равны, т. е.

Это значит, что модуль реактивной силы тяги двигателя будет равен

Другими словами, реактивная сила, действующая на тело переменной массы, всегда пропорциональна массе ежесекундно отделяющихся частиц и их скорости относительно тела.

Уравнения движения тел переменной массы и выражение для реактивной силы были впервые найдены петербургским профессором И. В. Мещерским в 1897 г. Уравнения Мещерского принадлежат к числу важнейших открытий в механике, сделанных на рубеже XIX и XX вв. С особой силой значение этих открытий выявилось в наши дни, когда уравнения Мещерского стали широко использоваться в ракетной технике. Формула для реактивной силы, с которой мы познакомились, сейчас является основной для расчета силы тяги ракетных и турбореактивных двигателей всех систем.