Реакция мозга на информации. Передача информации от рецептора в мозг Строение и функции мозжечка

Человек в состоянии ощущать и воспринимать объективный мир благодаря особой деятельности мозга. Именно с мозгом связаны все органы чувств. Каждый из этих органов реагирует на определенного рода стимулы: органы зрения - на световое воздействие, органы слуха и осязания - на механическое воздействие, органы вкуса и обоняния - на химическое. Однако сам мозг не в состоянии воспринимать эти виды воздействий. Он "понимает" только электрические сигналы, связанные с нервными импульсами. Для того чтобы мозг отреагировал на раздражитель, в каждой сенсорной модальности сначала должно произойти преобразование соответствующей физической энергии в электрические сигналы, которые затем своими путями следуют в мозг. Этот процесс перевода осуществляют специальные клетки в органах чувств, называемые рецепторами. Зрительные рецепторы, например, расположены тонким слоем на внутренней стороне глаза; в каждом зрительном рецепторе есть химическое вещество, реагирующее на свет, и эта реакция запускает ряд событий, в результате которых возникает нервный импульс. Слуховые рецепторы представляют собой тонкие волосяные клетки, расположенные глубоко в ухе; вибрации воздуха, являющиеся звуковым стимулом, изгибают эти волосяные клетки, в результате чего и возникает нервный импульс. Аналогичные процессы происходят и в других сенсорных модальностях.

Рецептор - это специализированная нервная клетка, или нейрон; будучи возбужденной, она посылает электрический сигнал промежуточным нейронам. Этот сигнал движется, пока не достигнет своей рецептивной зоны в коре головного мозга, причем у каждой сенсорной модальности имеется своя рецептивная зона. Где-то в мозге - может, в рецептивной зоне коры, а может, в каком-то другом участке коры - электрический сигнал вызывает осознанное переживание ощущения. Так, когда мы ощущаем прикосновение, это ощущение "происходит" у нас в мозге, а не на коже. При этом электрические импульсы, которые прямо опосредуют ощущение касания, сами были вызваны электрическими импульсами, возникшими в рецепторах осязания, которые расположены в коже. Сходным образом ощущение горького вкуса рождается не в языке, а в мозге; но мозговые импульсы, опосредующие ощущение вкуса, сами были вызваны электрическими импульсами вкусовых рецепторов языка.

Мозг воспринимает не только воздействие раздражителя, он также воспринимает и ряд характеристик раздражителя, например интенсивность воздействия. Следовательно, рецепторы должны обладать способностью кодировать интенсивность и качественные параметры раздражителя. Как они это делают?

Для того чтобы ответить на этот вопрос, ученым необходимо было провести ряд экспериментов по регистрации активности единичных клеток рецептора и проводящих путей во время предъявления испытуемому различных входных сигналов, или стимулов. Так можно точно определить, на какие свойства стимула реагирует тот или иной нейрон. Как практически осуществляется подобный эксперимент?

До начала эксперимента животное (обезьяну) подвергают хирургической операции, во время которой в определенные участки зрительной коры вживляются тонкие провода. Разумеется, такая операция проводится в условиях стерильности и при соответствующей анестезии. Тонкие провода - микроэлектроды - покрыты изоляцией везде, кроме самого кончика, которым регистрируется электрическая активность контактирующего с ним нейрона. После имплантации эти микроэлектроды не вызывают боли, и обезьяна может жить и передвигаться вполне нормально. Во время собственно эксперимента обезьяну помещают в устройство для тестирования, а микроэлектроды подсоединяют к усиливающим и регистрирующим устройствам. Затем обезьяне предъявляют различные зрительные стимулы. Наблюдая, от какого электрода поступает устойчивый сигнал, можно определить, какой нейрон реагирует на каждый из стимулов. Поскольку эти сигналы очень слабые, их надо усилить и отобразить на экране осциллографа, преобразующего их в кривые изменения электрического напряжения. Большинство нейронов вырабатывает ряд нервныхимпульсов, отражающихся на осциллографе в виде вертикальных всплесков (спайков). Даже при отсутствии стимулов многие клетки вырабатывают редкие импульсы (спонтанная активность). Когда предъявляется стимул, к которому чувствителен данный нейрон, можно видеть быструю последовательность спайков. Регистрируя активность единичной клетки, ученые немало узнали о том, как органы чувств кодируют интенсивность и качество стимула. Основной способ кодирования интенсивности стимула - это число нервных импульсов в единицу времени, т.е. частота нервных импульсов. Покажем это на примере осязания. Если кто-то слегка коснется вашей руки, в нервных волокнах появится ряд электрических импульсов. Если давление увеличивается, величина импульсов остается той же, но их число в единицу времени возрастает. То же самое с другими модальностями. В общем, чем больше интенсивность, тем выше частота нервных импульсов и тем больше воспринимаемая интенсивность стимула.

Интенсивность стимула можно кодировать и другими способами. Один из них - кодировать интенсивность в виде временного паттерна следования импульсов. При низкой интенсивности нервные импульсы следуют относительно редко и интервал между соседними импульсами изменчив. При высокой же интенсивности этот интервал становится достаточно постоянным. Еще одна возможность - кодировать интенсивность в виде абсолютного числа активированных нейронов: чем больше интенсивность стимула, тем больше вовлеченных нейронов.

Кодирование качества стимула - дело более сложное. Пытаясь объяснить этот процесс, И. Мюллер в 1825 г. предположил, что мозг способен различать информацию разных сенсорных модальностей благодаря тому, что она идет по различным чувствительным нервам (одни нервы передают зрительные ощущения, другие - слуховые и т.д.). Поэтому, если не брать во внимание ряд утверждений Мюллера о непознаваемости реального мира, то можно согласиться с тем, что нервные пути, начинающиеся у различных рецепторов, оканчиваются в различных зонах коры мозга. Следовательно, мозг получает информацию о качественных параметрах раздражителя благодаря тем нервным каналам, которые соединяют мозг и рецептор. Однако мозг способен различать воздействия одной модальности. Например, мы отличаем красное от зеленого или сладкое от кислого. Видимо, кодирование здесь также связано со специфическими нейронами. К примеру, есть подтверждение тому, что человек отличает сладкое от кислого просто потому, что для каждого вида вкуса имеются свои нервные волокна. Так, по "сладким" волокнам передается в основном информация от рецепторов сладкого, по "кислым" волокнам - от рецепторов кислого, и то же самое с "солеными" волокнами и "горькими" волокнами.

Однако специфичность - не единственный возможный принцип кодирования. Возможно также, что в сенсорной системе для кодирования информации о качестве используется определенный паттерн нервных импульсов. Отдельное нервное волокно, максимально реагируя, скажем, на сладкое, может реагировать, но в различной степени, и на другие виды вкусовых стимулов. Одно волокно сильнее всего реагирует на сладкое, слабее - на горькое и еще слабее - на соленое; так что "сладкий" стимул активировал бы большое количество волокон с разной степенью возбудимости, и тогда этот конкретный паттерн нервной активности и был бы в системе кодом для сладкого. В качестве кода горького по волокнам передавался бы другой паттерн.

Вместе с тем в научной литературе мы можем встретить и другое мнение. Например, есть все основания утверждать, что качественные параметры раздражителя могут быть закодированы через форму электрического сигнала, поступающего в мозг. С подобным явлением мы сталкиваемся, когда воспринимаем тембр голоса или тембр звучания музыкального инструмента. Если форма сигнала близка к синусоиде, то тембр нам приятен, если же форма существенно отличается от синусоиды, то у нас возникает ощущение диссонанса.

Таким образом, отражение в ощущениях качественных параметров раздражителя - это весьма сложный процесс, природа которого до конца не изучена.

По: Аткинсон Р.Л., Аткинсон Р.С., Смит Э.Е и др. Введение в психологию: Учебник для университетов / Пер. с англ. под. ред. В.П. Зинченко, - М.: Тривола, 1999.

Ощущения связывают человека с внешним миром и являются как основным источником информации о нем, так и основным условием психического развития. Однако несмотря на очевидность этих положений, они неоднократно подвергались сомнению. Представители идеалистического направления в философии и психологии нередко высказывали мысль о том, что подлинным источником нашей сознательной деятельности являются не ощущения, а внутреннее состояние сознания, способность разумного мышления, заложенные от природы и не зависимые от притока информации, поступающей из внешнего мира. Эти воззрения легли в основу философии рационализма. Суть ее заключалась в утверждении о том, что сознание и разум - это первичное, далее не объяснимое свойство человеческого духа.

Философы-идеалисты и многие психологи, являющиеся сторонниками идеалистической концепции, нередко делали попытки отвергнуть положение о том, что ощущения человека связывают его с внешним миром, и доказать обратное, парадоксальное положение, заключающееся в том, что ощущения непреодолимой стеной отделяют человека от внешнего мира. Подобное положение было выдвинуто представителями субъективного идеализма (Д. Беркли, Д. Юм, Э. Мах).

И. Мюллер, один из представителей дуалистического направления в психологии, на основе вышеупомянутого положения субъективного идеализма сформулировал теорию "специфической энергии органов чувств". Согласно этой теории, каждый из органов чувств (глаз, ухо, кожа, язык) не отражает воздействия внешнего мира, не дает информации о реальных процессах, протекающих в окружающей среде, а лишь получает от внешних воздействий толчки, возбуждающие их собственные процессы. Согласно этой теории, каждый орган чувств обладает своей собственной "специфической энергией", возбуждаемой любым воздействием, доходящим из внешнего мира. Так, достаточно нажать на глаз или воздействовать на него электрическим током, чтобы получить ощущение света; достаточно механического или электрического раздражения уха, чтобы возникло ощущение звука. Из этих положений делался вывод, что органы чувств не отражают внешних воздействий, а лишь возбуждаются от них, и человек воспринимает не объективные воздействия внешнего мира, а лишь свои собственные субъективные состояния, отражающие деятельность его органов чувств.

Близкой была точка зрения Г. Гельмгольца, который не отвергал того, что ощущения возникают в результате воздействия предметов на органы чувств, но считал, что возникающие вследствие этого воздействия психические образы не имеют ничего общего с реальными объектами. На этом основании он называл ощущения "символами", или "знаками", внешних явлений, отказываясь признать их изображениями, или отображениями, этих явлений. Он считал, что воздействие определенного объекта на орган чувств вызывает в сознании "знак", или "символ", воздействующего объекта, но не его изображение. "Ибо от изображения требуется известное сходство с изображаемым предметом... От знака же не требуется никакого сходства с тем, знаком чего он является".

Легко видеть, что оба этих подхода приводят к следующему утверждению: человек не может воспринимать объективный мир, и единственной реальностью являются субъективные процессы, отражающие деятельность его органов чувств, которые и создают субъективно воспринимаемые "элементы мира".

Подобные выводы были положены в основу теории солипсизма (от лат. solus - один, ipse - сам) сводившейся к тому, что человек может познать только самого себя и не имеет никаких доказательств существования чего-то иного, кроме него самого.

На противоположных позициях стоят представители материалистического направления, считающие возможным объективное отражение внешнего мира. Изучение эволюции органов чувств убедительно показывает, что в процессе длительного исторического развития сформировались особые воспринимающие органы (органы чувств, или рецепторы), которые специализировались на отражении особых видов объективно существующих форм движения материи (или видов энергии): слуховые рецепторы, отражающие звуковые колебания; зрительные рецепторы, отражающие определенные диапазоны электромагнитных колебаний, и т.д. Изучение эволюции организмов показывает, что на самом деле мы имеем не "специфические энергии самих органов чувств", а специфические органы, объективно отражающие различные виды энергии. Причем высокая специализация различных органов чувств имеет в своей основе не только особенности строения периферической части анализатора - рецепторов, но и высочайшую специализацию нейронов, входящих в состав центральных нервных аппаратов, до которых доходят сигналы, воспринимаемые периферическими органами чувств.

Следует отметить, что ощущения человека - это продукт исторического развития, и поэтому они качественно отличаются от ощущений животных. У животных развитие ощущений целиком ограничено их биологическими, инстинктивными потребностями. У многих животных отдельные виды ощущений поражают своей тонкостью, однако проявление этой тонко развитой способности ощущения не может выйти за пределы того круга объектов и их свойств, которые имеют непосредственное жизненное значение для животных данного вида. Например, пчелы способны гораздо тоньше, чем среднестатистический человек, различать концентрацию сахара в растворе, но этим и ограничивается тонкость их вкусовых ощущений. Другой, пример: ящерица, которая способна слышать легкий шорох ползущего насекомого, никак не будет реагировать на очень громкий стук камня о камень.

У человека способность ощущать не ограничена биологическими потребностями. Труд создал у него несравненно более широкий, чем у животных, круг потребностей, а в деятельности, направленной на удовлетворение этих потребностей, постоянно развивались способности человека, в том числе и способность ощущать. Поэтому человек может ощущать гораздо большее количество свойств окружающих его предметов, чем животное.

1 За основу данного раздела взяты главы из книги: Психология. / Под ред. проф. К.Н. Корнилова, проф. А.А. Смирнова., проф. Б.М. Теплова. - Изд. 3-е, перераб. и доп. - М.: Учпедгиз, 1948.

Все наши чувства формируются в головном мозге. Вне зависимости от вида поступающей информации, будь то звуки музыки, какие-то запахи или визуальные образы, все они по своей сути — это всего лишь сигналы, передающиеся и расшифровывающиеся специализированными клетками. При этом, если не принимать во внимание эти сигналы, то мозг никак напрямую не контактирует с внешней средой. И если так, то вполне вероятно, что у нас есть возможность сформировать новые пути взаимодействия мозга с окружающим миром и передавать данные напрямую.

Давайте вернемся на пару предложений назад. Если вся информация — это лишь поступающие импульсы, то почему зрение так отличается от запаха или вкуса? Почему вы никогда не перепутаете визуальную красоту распускающейся сосны со вкусом сыра фета? Или трение наждачной бумаги на кончиках пальцев с запахом свежего эспрессо? Можно предположить, что это как-то связано со структурой мозга: участки, участвующие в слухе, отличаются от тех, что обрабатывают данные о визуальных образах и так далее. Но почему в таком случае люди, потерявшие, например, зрение, согласно многочисленным исследованиям, получают «переориентацию» зрительной зоны на усиление других чувств?

Таким образом возникла гипотеза: внутренний субъективный опыт определяется структурой самих данных. Другими словами, сама информация, поступающая, допустим, от сетчатки, имеет иную структуру, чем данные, исходящие от барабанной перепонки или рецепторов с кончиков пальцев. В результате и получаются разные чувства. Получается, что в теории мы можем сформировать новые пути для передачи информации. Это не будет похоже на зрение, слух, вкус, прикосновение или запах. Это будет что-то совершенно новое.

Есть два способа сделать это. Первый — путем вживления электродов непосредственно в мозг. Второй — получением сигналов мозгом неинвазивно. К примеру, с помощью носимых устройств. Представьте, что вы носите браслет с несколькими вибрационными двигателями, которые стимулируют различные места вокруг запястья, чтобы сформировать поток данных. Когда мы устанавливаем четкую взаимосвязь между информацией и видом прикосновения, люди смогут легко начать ее распознавать. Чем то подобным в данный момент занимается компания NeoSensory, создавая вибрационные нейроинтерфейсы. Один из таких разработчики планируют представить уже в следующем 2019 году.

«Подумайте о том, как младенцы “учатся” пользоваться ушами, хлопая в ладоши или бормоча что–нибудь и улавливая звуки. Такое обучение также можно наблюдать у людей, родившихся глухими и оснащенных кохлеарными имплантами во взрослом возрасте. Во-первых, опыт кохлеарного имплантата совсем не похож на звук. Моя подруга описала это как безболезненные удары электрическим током. Она не чувствовала, что это как-то связано со звуком. Но примерно через месяц все начало «звучать», пусть и паршиво. Возможно, тот же самый процесс произошел с каждым из нас, когда мы учились пользоваться ушами. Мы просто не помним этого.» — заявил один из авторов работы по созданию нейроинтерфейсов Дэвид Иглман.

Основано на заметке профессора кафедры психиатрии и поведенческих наук Стэнфордского университета, автора книги The Brain: The Story Of You, а также одного из основателей NeoSensory Дэвида Иглмана. Опубликовано в издании Wired.

Верите ли вы в развитие нейроинтерфейсов? Можете рассказать об этом в нашем

Человек в состоянии ощущать и воспринимать объективный мир благодаря особой деятельности мозга. Именно с мозгом связаны все органы чувств. Каждый из этих органов реагирует на определенного рода стимулы: органы зрения - на световое воздействие, органы слуха и осязания - на механическое воздействие, органы вкуса и обоняния - на химическое. Од­нако сам мозг не в состоянии воспринимать эти виды воздействий. Он «понимает» только элек­трические сигналы, связанные с нервными импульсами. Для того чтобы мозг отреагировал на раздражитель, в каждой сенсорной модальности сначала должно произойти преобразование соответствующей физической энергии в электрические сигналы, которые затем своими путями следуют в мозг. Этот процесс перевода осуществляют специальные клетки в органах чувств, называемые рецепторами. Зрительные рецепторы, например, расположены тонким слоем на внутренней стороне глаза; в каждом зрительном рецепторе есть химическое вещество, реагирующее на свет, и эта реакция запускает ряд событий, в результате которых возникает нервный импульс. Слуховые рецепторы представляют собой тонкие волосяные клетки, расположенные глубоко в ухе; вибрации воздуха, являющиеся звуковым стимулом, изгибают эти волосяные клетки, в результате чего и возникает нервный импульс. Аналогичные про­цессы происходят и в других сенсорных модальностях.

Рецептор - это специализированная нервная клетка, или нейрон; будучи возбужденной, она посылает электрический сигнал промежуточным нейронам. Этот сигнал движется, пока не достигнет своей рецептивной зоны в коре головного мозга, причем у каждой сенсорной модальности имеется своя рецептивная зона. Где-то в мозге - может, в рецептивной зоне коры, а может, в каком-то другом участке коры - электрический сигнал вызывает осознанное переживание ощущения. Так, когда мы ощущаем прикосновение, это ощущение «происходит» у нас в мозге, а не на коже. При этом электрические импульсы, которые прямо опосредуют ощущение касания, сами были вызваны электрическими импульсами, возникшими в рецепторах осязания, которые расположены в коже. Сходным образом ощущение горького вкуса рождается не в языке, а в мозге; но мозговые импульсы, опосредующие ощущение вкуса, сами были вызваны электрическими импульсами вкусовых рецепторов языка.

Мозг воспринимает не только воздействие раздражителя, он также воспринимает и ряд характеристик раздражителя, например интенсивность воздействия. Следовательно, рецепторы должны обладать способностью кодировать интенсивность и качественные параметры раздражителя. Как они это делают?

Для того чтобы ответить на этот вопрос, ученым необходимо было провести ряд экспериментов по регистрации активности единичных клеток рецептора и проводящих путей во время предъявления испытуемому различных входных сигналов, или стимулов.

7.2. Виды ощущений

Существуют различные подходы к классификации ощущений. Издавна принято различать пять (по количеству органов чувств) основных видов ощущений: обоняние, вкус, осязание, зрение и слух. Эта классификация ощущений по основным модальностям является правильной, хотя и не исчерпывающей. Б.Г. Ананьев говорил об одиннадцати видах ощущений. А.Р. Лурия считает, что классификация ощущений может быть проведена, по крайней мере, по двум основным принципам - систематическому и генетическому (иначе говоря, по принципу модальности, с одной стороны, и по принципу сложности или уровня их построения - с другой).

Шеррингтон Чарльз Скотт (1857-1952) - английский физиолог и психофизиолог. В 1885 г. он окончил Кембриджский университет, а затем работал в таких известных университетах, как Лондонский, Ливерпульский, Оксфордский и Эдинбургский. С 1914 по 1917 г. он - профессор-исследователь по физиологии в Королевском институте Великобритании. Лауреат Нобелевской премии.

Получил широкую известность благодаря своим экспериментальным исследованиям, которые проводил, исходя из представления о нервной системе как о целостной системе. Он был одним из первых, кто предпринял попытку эксперимен­тальной проверки теории Джемса-Ланге и показал, что отделение висцеральной нервной системы от центральной нервной системы не изменяет общего поведения животного в ответ на эмоциогенное воздействие.

Ч. Шеррингтону принадлежит классификация рецепторов на экстероцепторы, проприоцепторы и интероцепторы. Он также экспериментально показал возможность происхождения дистантных рецепторов из контактных.

Систематическая классификация ощущений была предложена английским физиологом Ч. Шеррингтоном . Он разделил наиболее крупные и существенные группы ощущений на три основных типа:

    интероцептивные - объединяют сигналы, доходящие до нас из внутренней среды организма; возникают благодаря внутренним рецепторам, находящимся на стенках желудка и кишечника, сердца и кровеносной системы и других внутренних органов; наиболее древняя и элементарная группа ощущений; относятся к числу наименее осознаваемых и наиболее диффузных форм ощущений и всегда сохраняют свою близость к эмоциональным состояниям.

    проприоцептивные - передают информацию о положении тела в пространстве и о положении опорно-двигательного аппарата; обеспечивают регуляцию движений; включает ощущение равновесия, или статическое ощущение, а также двигательное, или кинестетическое, ощущение; периферические рецепторы проприоцептивной чувствительности находятся в мышцах и суставах (сухожилиях, связках) и называются тельцами Паччини; периферические рецепторы ощущения равновесия расположены в полукружных каналах внутреннего уха.

    экстероцептивные ощущения - обеспечивают получение сигналов из внешнего мира и создают основу для нашего сознательного поведения; группу экстероцептивных ощущений принято условно разделять на две подгруппы: контактные и дистантные ощущения.

    Контактные ощущении вызываются непосредственным воздействием объекта на органы чувств: вкус и осязание.

    Дистантные ощущения отражают качества объектов, находящихся на некотором расстоянии от органов чувств: слух и зрение.

Обоняние, по мнению многих авторов, занимает промежуточное положение между контактными и дистантными ощущениями, поскольку формально обонятельные ощущения возникают на расстоянии от предмета, но в то же время молекулы, характеризующие запах предмета, с которыми происходит контакт обонятельного рецептора, несомненно принадлежат данному предмету.

В этом и заключается двойственность положения, занимаемого обонянием в классификации ощущений.

Поскольку ощущение возникает в результате воздействия определенного физического раздражителя на соответствующий рецептор, то первичная классификация ощущений исходит из типа рецептора, который дает ощущение данного качества, или «модальности».

Существуют ощущения, которые не могут быть связаны с какой-либо определенной модальностью - интермодальные . К ним относится вибрационная чувствительность , которая связывает тактильно-моторную сферу со слуховой.

Ощущение вибрации - это чувствительность к колебаниям, вызываемым движущимся телом. По мнению большинства исследователей, вибрационное чувство является промежуточной, переходной формой между тактильной и слуховой чувствительностью.

Особое практическое значение вибрационная чувствительность приобретает при поражениях зрения и слуха. В жизни глухих и слепоглухонемых она играет большую роль. Слепоглухонемые, благодаря высокому развитию вибрационной чувствительности, узнавали о приближении грузовика и других видов транспорта на большом расстоянии. Таким же образом посредством вибрационного чувства слепоглухонемые узнают, когда к ним в комнату кто-нибудь входит. Следовательно, ощущения, являясь самым простым видом психических процессов, на самом деле весьма сложны и в полной мере не изучены.

Генетическая классификация , предложенная английским неврологом X. Хэдом . позволяет выделить два вида чувствительности:

    протопатическую (более примитивную, аффективную, менее дифференцированную и локализованную), к которой относятся органические чувства (голод, жажда и др.);

    эпикритическую (более тонко дифференцирующую, объективированную и рациональную), к которой относят основные виды ощущений человека; более молодая в генетическом плане, осуществляет контроль за протопатической чувствительностью.

Классификация известного отечественного психолога Б. М. Теплова - разделял все рецепторы па две большие группы:

    экстероцепторы (внешние рецепторы), расположенные на поверхности тела или близко к ней и доступные воздействию внешних раздражителей,

    интероцепторы (внутренние рецепторы), расположенные в глубине тканей, например мышц, или на поверхности внутренних органов. Группу ощущений, названных нами «проприоцептивные ощущения», Б.М. Теплов рассматривал как внутренние ощущения.

При этом, несмотря на доли секунды задержки, реализованный учеными интерфейс мозг-компьютер-интернет-компьютер-мозг, позволил одному человеку управлять движениями другого человека. В связи с тем, что данные работы проводятся под эгидой Исследовательского управления армии США (Army Research Office), совершенно неудивительно, что в последней демонстрации использовалась игра-стрелялка и выполнялась имитация действий с взрывными устройствами. Американские военные видят в такой технологии возможность при помощи прямой информационной передачи обойти языковый барьер и различия в опыте между двумя людьми, которым требуется совместными усилиями выполнить некоторую, возможно опасную, работу.

Первая демонстрация работоспособности этой системы была проведена в прошлом году. А нынешняя демонстрация не только подтвердила работоспособность самой идеи, но и показала некоторые расширенные ее возможности. Как и раньше, один из участников, тот, который дистанционно управляет действиями другого человека, одевает ЭЭГ-датчики, при помощи которых компьютер считывает картины мозговой деятельности определенных участков мозга. Эти данные оцифровываются и передаются через Интернет другому компьютеру, который выполняет всю последовательность в обратном порядке. Второй человек, исполнитель, находится под воздействием магнитного поля, индуцируемого катушкой, направленной в область мозга, которая управляет движениями рук. Человек-оператор может послать команду другому человеку и для этого ему не нужно даже двигаться, ему достаточно только представить себе, будто бы он двигает своей рукой. Человек-исполнитель получает команды извне при помощи технологии трансчерепного магнитного возбуждения и его руки движутся независимо от его сознания.

В своих экспериментах исследователи проверили работоспособность системы на трех парах участников. Оператор и исполнитель всегда находились в двух зданиях, расстояние между которыми было равно 1.5 километрам и между которыми была проложена только одна линия цифровой связи. «Первый оператор был задействован в компьютерной игре, в которой он должен был защитить город от нападения, используя оружие различных типов и сбивая ракеты, запускаемые неприятелем. При этом, он был полностью лишен возможности физического воздействия на игровой процесс. Единственный способ, которым оператор мог играть в игру, заключался в мысленном управлении движениями своих рук и пальцев, - пишут исследователи из Вашингтона. - Точность игры от пары к паре различалась весьма сильно и составляла от 25 до 83 процентов. А самый большой уровень ошибок пришелся на долю ошибки выполнения команды „огонь“».

В настоящее время исследователи получили грант в размере миллиона долларов от фонда W. M. Keck Foundation, благодаря которому они смогут продолжить и расширить область своих исследований. В рамках нового этапа исследователи собираются научиться расшифровывать и передавать более сложные мозговые процессы, расширить количество типов передаваемой информации, что позволит реализовать передачу понятий, мыслей и правил. Благодаря этому, по крайней мере на это рассчитывают ученые, станет возможной реализация в недалеком будущем таких фантастических технологий, при помощи которых, к примеру, блестящие ученые смогут передавать ученикам свои знания напрямую, или виртуозные музыканты или хирурги смогут дистанционно производить операции, действуя руками других людей.

Коллектив ученых из Испании, Франции и Англии сообщил о завершении первого в истории эксперимента по передаче сигнала между сознаниями двух людей при помощи исключительно неинвазивных технологий. Сигнал, состоящий из 140 битов информации, удалось передать из Индии во Францию через интернет. Работа опубликована в PLOS One .

Общая схема эксперимента. Изображение: статья в PLOS one


В основе эксперимента лежали интерфейсы «мозг-компьютер» (BCI) и «компьютер-мозг» (CBI), сигнал передавался через интернет. В качестве сообщения в конечном счете выступило слово «hola» - «привет» на испанском (и каталонском). Для кодирования использовали шифр Бэкона , использующий 5 битов на букву. Слово передавали 7 раз для набора достаточной статистики, таким образом итоговое сообщение было длиной 140 бит.

Интерфейс «мозг-компьютер» ученые моделировали следующим образом: для кодирования «0» человек-«передатчик» шевелил ступней, для «1» - ладонью. Снимая электроэнцефалограмму с областей коры головного мозга, отвечающих за эти движения, компьютер получил передаваемое сообщение в виде двоичных битов.

С интерфейсом «компьютер-мозг» все обстояло сложнее. На голове человека-«приемника» находили визуальный центр коры головного мозга, при стимуляции которого возникало явление фосфенов - зрительных ощущений, возникающих без информации с глаза. Наличие такого ощущения кодировало «1», отсутствие - «0».


В качестве передающих и принимающих сторон выступали четверо добровольцев возрастом 28-50 лет. Для итогового эксперимента сигнал передавали из Индии во Францию. Для того, чтобы исключить помехи, возникающие от органов чувств, человеку-«приемника» надевали на глаза светонепроницаемую маску, а в уши помещали затычки. Чтобы исключить возможность отгадывания закодированного слова, последовательность сначала дополнительно кодировали для получения псевдослучайного кода, который после передачи подвергали дешифровке для восстановления исходного сообщения.

В результате эксперимента удалось передать 140 битов информации с долей ошибки 4%. Для сравнения, чтобы убедиться, что этот результат статистически значим: вероятность угадать все 140 символов подряд составляет меньше 10 -22 , а чтобы угадать хотя бы 80% из 140 символов - меньше 10 -13 . Таким образом, по мнению ученых, в самом деле имела место прямая передача сигнала от мозга к мозгу.

Новизна и значимость данный работы происходят из того факта, что до сих пор все подобные эксперименты или ограничивались одним из двух интерфейсов, или проводились над лабораторными животными, или включали в себя инвазивные процедуры по вживлению датчиков в живой организм. В данной работе ученым впервые удалось реализовать неинвазивную передачу от человека к человеку.