Как ищется площадь параллелограмма. Как найти площадь параллелограмма? Формулы нахождения площади параллелограмма

Площадь геометрической фигуры - численная характеристика геометрической фигуры показывающая размер этой фигуры (части поверхности, ограниченной замкнутым контуром данной фигуры). Величина площади выражается числом заключающихся в нее квадратных единиц.

Формулы площади треугольника

  1. Формула площади треугольника по стороне и высоте
    Площадь треугольника равна половине произведения длины стороны треугольника на длину проведенной к этой стороне высоты
  2. Формула площади треугольника по трем сторонам и радиусу описанной окружности
  3. Формула площади треугольника по трем сторонам и радиусу вписанной окружности
    Площадь треугольника равна произведения полупериметра треугольника на радиус вписанной окружности.
  4. где S - площадь треугольника,
    - длины сторон треугольника,
    - высота треугольника,
    - угол между сторонами и,
    - радиус вписанной окружности,
    R - радиус описанной окружности,

Формулы площади квадрата

  1. Формула площади квадрата по длине стороны
    Площадь квадрата равна квадрату длины его стороны.
  2. Формула площади квадрата по длине диагонали
    Площадь квадрата равна половине квадрата длины его диагонали.
    S = 1 2
    2
  3. где S - Площадь квадрата,
    - длина стороны квадрата,
    - длина диагонали квадрата.

Формула площади прямоугольника

    Площадь прямоугольника равна произведению длин двух его смежных сторон

    где S - Площадь прямоугольника,
    - длины сторон прямоугольника.

Формулы площади параллелограмма

  1. Формула площади параллелограмма по длине стороны и высоте
    Площадь параллелограмма
  2. Формула площади параллелограмма по двум сторонам и углу между ними
    Площадь параллелограмма равна произведению длин его сторон умноженному на синус угла между ними.

    a · b · sin α

  3. где S - Площадь параллелограмма,
    - длины сторон параллелограмма,
    - длина высоты параллелограмма,
    - угол между сторонами параллелограмма.

Формулы площади ромба

  1. Формула площади ромба по длине стороны и высоте
    Площадь ромба равна произведению длины его стороны и длины опущенной на эту сторону высоты.
  2. Формула площади ромба по длине стороны и углу
    Площадь ромба равна произведению квадрата длины его стороны и синуса угла между сторонами ромба.
  3. Формула площади ромба по длинам его диагоналей
    Площадь ромба равна половине произведению длин его диагоналей.
  4. где S - Площадь ромба,
    - длина стороны ромба,
    - длина высоты ромба,
    - угол между сторонами ромба,
    1 , 2 - длины диагоналей.

Формулы площади трапеции

  1. Формула Герона для трапеции

    Где S - Площадь трапеции,
    - длины основ трапеции,
    - длины боковых сторон трапеции,

Площадь параллелограмма

Теорема 1

Площадь параллелограмма определяется как произведение длины его стороны, на высоту, проведенную к ней.

где $a$ сторона параллелограмма, $h$ - высота, проведенная к этой стороне.

Доказательство.

Пусть нам дан параллелограмм $ABCD$, у которого $AD=BC=a$. Проведем высоты $DF$ и $AE$ (рис. 1).

Рисунок 1.

Очевидно, что фигура $FDAE$ -- прямоугольник.

\[\angle BAE={90}^0-\angle A,\ \] \[\angle CDF=\angle D-{90}^0={180}^0-\angle A-{90}^0={90}^0-\angle A=\angle BAE\]

Следовательно, так как $CD=AB,\ DF=AE=h$, по $I$ признаку равенства треугольников $\triangle BAE=\triangle CDF$. Тогда

Значит по теореме о площади прямоугольника :

Теорема доказана.

Теорема 2

Площадь параллелограмма определяется как произведение длины его смежных сторон, на синус угла между этими сторонами.

Математически это можно записать следующим образом

где $a,\ b$ стороны параллелограмма, $\alpha $ -- угол между ними.

Доказательство.

Пусть нам дан параллелограмм $ABCD$, у которого $BC=a,\ CD=b,\ \angle C=\alpha $. Проведем высоту $DF=h$ (рис. 2).

Рисунок 2.

По определению синуса, получим

Следовательно

Значит, по теореме $1$:

Теорема доказана.

Площадь треугольника

Теорема 3

Площадь треугольника определяется как половина произведения длины его стороны, на высоту, проведенную к ней.

Математически это можно записать следующим образом

где $a$ сторона треугольника, $h$ - высота, проведенная к этой стороне.

Доказательство.

Рисунок 3.

Значит по теореме $1$:

Теорема доказана.

Теорема 4

Площадь треугольника определяется как половина произведения длины его смежных сторон, на синус угла между этими сторонами.

Математически это можно записать следующим образом

где $a,\ b$ стороны треугольника, $\alpha $ -- угол между ними.

Доказательство.

Пусть нам дан треугольник $ABC$, у которого $AB=a$. Проведем высоту $CH=h$. Достроим его до параллелограмма $ABCD$ (рис. 3).

Очевидно, что по $I$ признаку равенства треугольников $\triangle ACB=\triangle CDB$. Тогда

Значит по теореме $1$:

Теорема доказана.

Площадь трапеции

Теорема 5

Площадь трапеции определяется как половина произведения суммы длин его оснований, на его высоту.

Математически это можно записать следующим образом

Доказательство.

Пусть нам дана трапеция $ABCK$, где $AK=a,\ BC=b$. Проведем в ней высоты $BM=h$ и $KP=h$, а также диагональ $BK$ (рис. 4).

Рисунок 4.

По теореме $3$, получим

Теорема доказана.

Пример задачи

Пример 1

Найти площадь равностороннего треугольника, если длина его стороны равняется $a.$

Решение.

Так как треугольник равносторонний, то все его углы равняются ${60}^0$.

Тогда, по теореме $4$, имеем

Ответ: $\frac{a^2\sqrt{3}}{4}$.

Заметим, что результат этой задачи можно применять при нахождении площади любого равностороннего треугольника с данной стороной.

Определение параллелограмма

Параллелограмм - это четырехугольник, в котором противоположные стороны равны и параллельны.

Онлайн-калькулятор

Параллелограмм обладает некоторыми полезными свойствами, которые упрощают решение задач, связанных с этой фигурой. Например, одно из свойств заключается в том, что противоположные углы параллелограмма равны.

Рассмотрим несколько способов и формул с последующим решением простых примеров.

Формула площади параллелограмма по основанию и высоте

Данный способ нахождения площади является, наверно, одним из основных и простых, так как он практически идентичен формуле по нахождению площади треугольника за небольшим исключением. Для начала разберем обобщенный случай без использования чисел.

Пусть дан произвольный параллелограмм с основанием a a a , боковой стороной b b b и высотой h h h , проведенной к нашему основанию. Тогда формула для площади этого параллелограмма:

S = a ⋅ h S=a\cdot h S = a ⋅ h

A a a - основание;
h h h - высота.

Разберем одну легкую задачу, чтобы потренироваться в решении типовых задач.

Пример

Найти площадь параллелограмма, в котором известно основание, равное 10 (см.) и высота, равная 5 (см.).

Решение

A = 10 a=10 a = 1 0
h = 5 h=5 h = 5

Подставляем в нашу формулу. Получаем:
S = 10 ⋅ 5 = 50 S=10\cdot 5=50 S = 1 0 ⋅ 5 = 5 0 (см. кв.)

Ответ: 50 (см. кв)

Формула площади параллелограмма по двум сторонам и углу между ними

В этом случае искомая величина находится так:

S = a ⋅ b ⋅ sin ⁡ (α) S=a\cdot b\cdot\sin(\alpha) S = a ⋅ b ⋅ sin (α )

A , b a, b a , b - стороны параллелограмма;
α \alpha α - угол между сторонами a a a и b b b .

Теперь решим другой пример и воспользуемся вышеописанной формулой.

Пример

Найти площадь параллелограмма если известна сторона a a a , являющаяся основанием и с длиной 20 (см.) и периметр p p p , численно равный 100 (см.), угол между смежными сторонами ( a a a и b b b ) равен 30 градусам.

Решение

A = 20 a=20 a = 2 0
p = 100 p=100 p = 1 0 0
α = 3 0 ∘ \alpha=30^{\circ} α = 3 0

Для нахождения ответа нам неизвестна лишь вторая сторона данного четырехугольника. Найдем ее. Периметр параллелограмма дается формулой:
p = a + a + b + b p=a+a+b+b p = a + a + b + b
100 = 20 + 20 + b + b 100=20+20+b+b 1 0 0 = 2 0 + 2 0 + b + b
100 = 40 + 2 b 100=40+2b 1 0 0 = 4 0 + 2 b
60 = 2 b 60=2b 6 0 = 2 b
b = 30 b=30 b = 3 0

Самое сложное позади, осталось только подставить наши значения для сторон и угла между ними:
S = 20 ⋅ 30 ⋅ sin ⁡ (3 0 ∘) = 300 S=20\cdot 30\cdot\sin(30^{\circ})=300 S = 2 0 ⋅ 3 0 ⋅ sin (3 0 ) = 3 0 0 (см. кв.)

Ответ: 300 (см. кв.)

Формула площади параллелограмма по диагоналям и углу между ними

S = 1 2 ⋅ D ⋅ d ⋅ sin ⁡ (α) S=\frac{1}{2}\cdot D\cdot d\cdot\sin(\alpha) S = 2 1 ​ ⋅ D ⋅ d ⋅ sin (α )

D D D - большая диагональ;
d d d - малая диагональ;
α \alpha α - острый угол между диагоналями.

Пример

Даны диагонали параллелограмма, равные 10 (см.) и 5 (см.). Угол между ними 30 градусов. Вычислить его площадь.

Решение

D = 10 D=10 D = 1 0
d = 5 d=5 d = 5
α = 3 0 ∘ \alpha=30^{\circ} α = 3 0

S = 1 2 ⋅ 10 ⋅ 5 ⋅ sin ⁡ (3 0 ∘) = 12.5 S=\frac{1}{2}\cdot 10 \cdot 5 \cdot\sin(30^{\circ})=12.5 S = 2 1 ​ ⋅ 1 0 ⋅ 5 ⋅ sin (3 0 ) = 1 2 . 5 (см. кв.)

Вывод формулы площади параллелограмма сводится к построению прямоугольника, равного данному параллелограмму по площади. Примем одну сторону параллелограмма за основание, а перпендикуляр, проведенный из любой точки противолежащей стороны на прямую, содержащую основание будем называть высотой параллелограмма. Тогда площадь параллелограмма будет равна произведению его основания на высоту.

Теорема. Площадь параллелограмма равна произведению его основания на высоту.

Доказательство . Рассмотрим параллелограмм с площадью. Примем сторонуза основание и проведем высотыи(рисунок 2.3.1). Требуется доказать, что.

Рисунок 2.3.1

Докажем сначала, что площадь прямоугольника также равна. Трапециясоставлена из параллелограммаи треугольника. С другой стороны, она составлена из прямоугольника НВСК и треугольника. Но прямоугольные треугольникии равны по гипотенузе и острому углу (их гипотенузыиравны как противоположные стороны параллелограмма, а углы 1 и 2 равны как соответственные углы при пересечении параллельных прямыхисекущей), поэтому их площади равны. Следовательно, площади параллелограммаи прямоугольникатакже равны, то есть площадь прямоугольникаравна. По теореме о площади прямоугольника, но так как, то.

Теорема доказана.

Пример 2.3.1.

В ромб со стороной и острым углом вписана окружность. Определить площадь четырёхугольника, вершинами которого являются точки касания окружности со сторонами ромба.

Решение:

Радиус вписанной в ромб окружности (рисунок 2.3.2), поскольку Четырёхугольникявляется прямоугольником, так как его углы опираются на диаметр окружности. Его площадь, где(катет, лежащий против угла),.

Рисунок 2.3.2

Итак,

Ответ:

Пример 2.3.2.

Дан ромб , диагонали которого равны 3 см и 4 см. Из вершины тупого угла проведены высотыиВычислить площадь четырёхугольника

Решение:

Площадь ромба (рисунок 2.3.3).

Итак,

Ответ:

Пример 2.3.3.

Площадь четырёхугольника равна Найти площадь параллелограмма, стороны которого равны и параллельны диагоналям четырёхугольника.

Решение:

Так как и(рисунок 2.3.4), то– параллелограмм и, значит,.

Рисунок 2.3.4

Аналогично получаем откуда следует, что.

Ответ: .

2.4 Площадь треугольника

Существует несколько формул для вычисления площади треугольника. Рассмотрим те, что изучаются в школе.

Первая формула вытекает из формулы площади параллелограмма и предлагается учащимся в виде теоремы.

Теорема. Площадь треугольника равна половине произведения его основания на высоту .

Доказательство. Пусть – площадь треугольника. Примем сторонуза основание треугольника и проведем высоту. Докажем что:

Рисунок 2.4.1

Достроим треугольник до параллелограмматак, как показано на рисунке. Треугольникииравны по трем сторонам (– их общая сторона,икак противоположные стороны параллелограма), поэтому их площади равны. Следовательно, площадь S треугольника АВС равна половине площади параллелограмма, т.е.

Теорема доказана.

Важно обратить внимание учащихся на два следствия, вытекающих из данной теоремы. А именно:

    площадь прямоугольного треугольника равна половине произведения его катетов.

    если высоты двух треугольников равны, то их площади относятся как основания.

Эти два следствия играют важную роль в решении разного рода задач. С опорой на данную доказывается еще одна теорема, имеющая широкое применение при решении задач.

Теорема. Если угол одного треугольника равен углу другого треугольника, то их площади относятся как произведения сторон, заключающих равные углы.

Доказательство . Пусть и– площади треугольникови, у которых углыиравны.

Рисунок 2.4.2

Докажем, что: .

Наложим треугольник . на треугольниктак, чтобы вершинасовместилась с вершиной, а стороныиналожились соответственно на лучии.

Рисунок 2.4.3

Треугольники иимеют общую высоту, поэтому,. Треугольникиитакже имеют общую высоту –, поэтому,. Перемножая полученные равенства, получим.

Теорема доказана.

Вторая формула. Площадь треугольника равна половине произведения двух его сторон на синус угла между ними. Существует несколько способов доказательства этой формулы, и я воспользуюсь одним из них.

Доказательство. Из геометрии известна теорема о том, что площадь треугольника равна половине произведения основания на высоту, опущенную на это основание:

В случае остроугольного треугольника . В случае тупого угла. Ho, а поэтому. Итак, в обоих случаях. Подставив вместов геометрической формуле площади треугольника, получим тригонометрическую формулу площади треугольника:

Теорема доказана.

Третья формула для площади треугольника – формула Герона , названа так в честь древнегреческого ученого Герона Александрийского, жившего в первом веке нашей эры. Эта формула позволяет находить площадь треугольника, зная его стороны. Она удобна тем, что позволяет не делать никаких дополнительных построений и не измерять углов. Ее вывод основывается на второй из рассмотренных нами формул площади треугольника и теореме косинусов: и .

Прежде чем перейти к реализации этого плана, заметим, что

Точно так же имеем:

Теперь выразим косинус через и:

Так как любой угол в треугольнике больше и меньше, то. Значит,.

Теперь отдельно преобразуем каждый из сомножителей в подкоренном выражении. Имеем:

Подставляя это выражение в формулу для площади, получаем:

Тема «Площадь треугольника» имеет большое значение в школьном курсе математики. Треугольник – простейшая из геометрических фигур. Он является «структурным элементом» школьной геометрии. Подавляющее большинство геометрических задач сводятся к решению треугольников. Не исключение и задача о нахождении площади правильного и произвольного n-угольника.

Пример 2.4.1.

Чему равна площадь равнобедренного треугольника, если его основание , а боковая сторона?

Решение :

–равнобедренный,

Рисунок 2.4.4

Проведём по свойству равнобедренного треугольника – медиана и высота. Тогда

В по теореме Пифагора:

Находим площадь треугольника:

Ответ:

Пример 2.4.2.

В прямоугольном треугольнике биссектриса острого угла делит противоположный катет на отрезки длиной 4 и 5 см. Определить площадь треугольника.

Решение:

Пусть (рисунок 2.4.5). Тогдаи(посколькуBD – биссектриса). Отсюда имеем , то есть. Значит,

Рисунок 2.4.5

Ответ:

Пример 2.4.3.

Найти площадь равнобедренного треугольника, если его основание равно , а длина высоты, проведённой к основанию, равна длине отрезка, соединяющего середины основания и боковой стороны.

Решение:

По условию, – средняя линия (рисунок 2.4.6). Так какВимеем:

или , откудаСледовательно,

При решении задач по данной теме кроме основных свойств параллелограмма и соответственных формул можно запомнить и применять следующее:

  1. Биссектриса внутреннего угла параллелограмма отсекает от него равнобедренный треугольник
  2. Биссектрисы внутренних углов прилежащие к одной из сторон параллелограмма взаимно перпендикулярные
  3. Биссектрисы, выходящие из противоположных внутренних углов параллелограмма, параллельные между собой либо лежат на одной прямой
  4. Сумма квадратов диагоналей параллелограмма равна сумме квадратов его сторон
  5. Площадь параллелограмма равна половине произведения диагоналей на синус угла между ними

Рассмотрим задачи, при решении которых используются данные свойства.

Задача 1.

Биссектриса угла С параллелограмма АВСD пересекает сторону АD в точке М и продолжение стороны АВ за точку А в точке Е. Найдите периметр параллелограмма, если АЕ = 4, DМ = 3.

Решение.

1. Треугольник СМD равнобедренный. (Свойство 1). Следовательно, СD = МD = 3 см.

2. Треугольник ЕАМ равнобедренный.
Следовательно, АЕ = АМ = 4 см.

3. АD = АМ + МD = 7 см.

4. Периметр АВСD = 20 см.

Ответ. 20 см.

Задача 2.

В выпуклом четырёхугольнике АВСD проведены диагонали. Известно, что площади треугольников АВD, АСD, ВСD равны. Докажите, что данный четырёхугольник является параллелограммом.

Решение.

1. Пусть ВЕ – высота треугольника АВD, СF – высота треугольника АCD. Так как по условию задачи площади треугольников равны и у них общее основание АD, то высоты этих треугольников равны. ВЕ = СF.

2. ВЕ, СF перпендикулярны АD. Точки В и С расположены по одну сторону относительно прямой АD. ВЕ = СF. Следовательно, прямая ВС || AD. (*)

3. Пусть АL – высота треугольника АСD, BK – высота треугольника BCD. Так как по условию задачи площади треугольников равны и у них общее основание СD, то высоты этих треугольников равны. АL = BK.

4. АL и BK перпендикулярны СD. Точки В и А расположены по одну сторону относительно прямой СD. АL = BK. Следовательно, прямая АВ || СD (**)

5. Из условий (*), (**) вытекает – АВСD параллелограмм.

Ответ. Доказано. АВСD – параллелограмм.

Задача 3.

На сторонах ВС и СD параллелограмма АВСD отмечены точки М и Н соответственно так, что отрезки ВМ и НD пересекаются в точке О; <ВМD = 95 о,

Решение.

1. В треугольнике DОМ <МОD = 25 о (Он смежный с <ВОD = 155 о); <ОМD = 95 о. Тогда <ОDМ = 60 о.

2. В прямоугольном треугольнике DНС
(

Тогда <НСD = 30 о. СD: НD = 2: 1
(Так как в прямоугольном треугольнике катет, который лежит против угла в 30 о, равен половине гипотенузы).

Но СD = АВ. Тогда АВ: НD = 2: 1.

3. <С = 30 о,

4. <А = <С = 30 о, <В =

Ответ: АВ: НD = 2: 1, <А = <С = 30 о, <В =

Задача 4.

Одна из диагоналей параллелограмма длиною 4√6, составляет с основанием угол 60 о, а вторая диагональ составляет с тем же основанием угол 45 о. Найти вторую диагональ.

Решение.

1. АО = 2√6.

2. К треугольнику АОD применим теорему синусов.

АО/sin D = OD/sin А.

2√6/sin 45 о = OD/sin 60 о.

ОD = (2√6sin 60 о) / sin 45 о = (2√6 · √3/2) / (√2/2) = 2√18/√2 = 6.

Ответ: 12.

Задача 5.

У параллелограмма со сторонами 5√2 и 7√2 меньший угол между диагоналями равен меньшему углу параллелограмма. Найдите сумму длин диагоналей.

Решение.

Пусть d 1 , d 2 – диагонали параллелограмма, а угол между диагоналями и меньший угол параллелограмма равен ф.

1. Посчитаем двумя разными
способами его площадь.

S ABCD = AB · AD · sin A = 5√2 · 7√2 · sin ф,

S ABCD = 1/2 AС · ВD · sin AОВ = 1/2 · d 1 d 2 sin ф.

Получим равенство 5√2 · 7√2 · sin ф = 1/2d 1 d 2 sin ф или

2 · 5√2 · 7√2 = d 1 d 2 ;

2. Используя соотношение между сторонами и диагоналями параллелограмма запишем равенство

(АВ 2 + АD 2) · 2 = АС 2 + ВD 2 .

((5√2) 2 + (7√2) 2) · 2 = d 1 2 + d 2 2 .

d 1 2 + d 2 2 = 296.

3. Составим систему:

{d 1 2 + d 2 2 = 296,
{d 1 + d 2 = 140.

Умножим второе уравнение системы на 2 и сложим с первым.

Получим (d 1 + d 2) 2 = 576. Отсюда Id 1 + d 2 I = 24.

Так как d 1 , d 2 – длины диагоналей параллелограмма, то d 1 + d 2 = 24.

Ответ: 24.

Задача 6.

Стороны параллелограмма 4 и 6. Острый угол между диагоналями равен 45 о. Найдите площадь параллелограмма.

Решение.

1. Из треугольника АОВ, используя теорему косинусов, запишем соотношение между стороной параллелограмма и диагоналями.

АВ 2 = АО 2 + ВО 2 2 · АО · ВО · cos АОВ.

4 2 = (d 1 /2) 2 + (d 2 /2) 2 – 2 · (d 1 /2) · (d 2 /2)cos 45 о;

d 1 2 /4 + d 2 2 /4 – 2 · (d 1 /2) · (d 2 /2)√2/2 = 16.

d 1 2 + d 2 2 – d 1 · d 2 √2 = 64.

2. Аналогично запишем соотношение для треугольника АОD.

Учтем, что <АОD = 135 о и cos 135 о = -cos 45 о = -√2/2.

Получим уравнение d 1 2 + d 2 2 + d 1 · d 2 √2 = 144.

3. Имеем систему
{d 1 2 + d 2 2 – d 1 · d 2 √2 = 64,
{d 1 2 + d 2 2 + d 1 · d 2 √2 = 144.

Вычитая из второго уравнения первое, получим 2d 1 · d 2 √2 = 80 или

d 1 · d 2 = 80/(2√2) = 20√2

4. S ABCD = 1/2 AС · ВD · sin AОВ = 1/2 · d 1 d 2 sin α = 1/2 · 20√2 · √2/2 = 10.

Примечание: В этой и в предыдущей задаче нет надобности, решать полностью систему, предвидя то, что в данной задаче для вычисления площади нам нужно произведение диагоналей.

Ответ: 10.

Задача 7.

Площадь параллелограмма равна 96, а его стороны равны 8 и 15. Найдите квадрат меньшей диагонали.

Решение.

1. S ABCD = AВ · АD · sin ВAD. Сделаем подстановку в формулу.

Получим 96 = 8 · 15 · sin ВAD. Отсюда sin ВAD = 4 / 5 .

2. Найдём cos ВАD. sin 2 ВAD + cos 2 ВАD = 1.

(4 / 5) 2 + cos 2 ВАD = 1. cos 2 ВАD = 9 / 25 .

По условию задачи мы находим длину меньшей диагонали. Диагональ ВD будет меньшей, если угол ВАD острый. Тогда cos ВАD = 3 / 5.

3. Из треугольника АВD по теореме косинусов найдём квадрат диагонали ВD.

ВD 2 = АВ 2 + АD 2 – 2 · АВ · ВD · cos ВАD.

ВD 2 = 8 2 + 15 2 – 2 · 8 · 15 · 3 / 5 = 145.

Ответ: 145.

Остались вопросы? Не знаете, как решить геометрическую задачу?
Чтобы получить помощь репетитора – зарегистрируйтесь .
Первый урок – бесплатно!

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.