Облигатные анаэробы все верно кроме. Токсичность кислорода и его форм для анаэробных организмов

Анаэробы и аэробы – две формы существования организмов на земле. В статье речь идёт о микроорганизмах.

Анаэробы – микроорганизмы, которые развиваются и размножаются в среде, не содержащей свободный кислород. Анаэробные микроорганизмы обнаруживаются практически во всех тканях человека из гнойно-воспалительных очагов. Их относят к условно-патогенным (существуют у человека в номе и развиваются только у людей с ослабленной иммунной системой), но иногда они могут быть патогенными (болезнетворными).

Различают факультативные и облигатные анаэробы. Факультативные анаэробы могут развиваться и размножаться и в бескислородной и в кислородной среде. Это такие микроорганизмы как кишечная палочка, иерсинии, стафилококки, стрептококки, шигеллы и другие бактерии. Облигатные анаэробы могут существовать только в бескислородной среде и погибают при появлении свободного кислорода в окружающей среде. Облигатные анаэробы подразделяют на две группы:

  • бактерии, образующие споры, иначе их называют клостридии
  • бактерии, не образующие споры, или иначе неклостридиальные анаэробы.

Клостридии — это возбудители анаэробных клостридиальных инфекций – ботулизма, клостридиальных раневых инфекций, столбняка. Неклостридиальные анаэробы это нормальная микрофлора человека и животных. К ним относят бактерии палочковидной и шаровидной формы: бактероиды, фузобактерии, пейллонеллы, пептококки, пептострептококки, пропионибактерии, эубактерии и другие.

Но неклостридиальные анаэробы могут существенно способствовать развитию гнойно-воспалительных процессов (перитонит, абсцессы лёгких и головного мозга, пневмония, эмпиема плевры, флегмоны челюстно-лицевой области, сепсис, отит и другие). Большинство анаэробных инфекций, вызываемых неклостридиальными анаэробами, относятся к эндогенным (внутреннего происхождения, вызываемые внутренними причинами) и развиваются главным образом при снижении сопротивляемости организма, устойчивости к воздействию болезнетворных микроорганизмов в результате травм, операций, переохлаждения, снижения иммунитета.

Основную часть анаэробов, играющих роль в развитии инфекций составляют бактероиды, фузобактерии, пептострептококки и споровые палочки. Половину гнойно-воспалительных анаэробных инфекций вызывают бактероиды.

  • Бактероиды-палочки, размером 1-15 мкм, наподвижные или движущиеся с помощью жгутиков. Они выделяют токсины, действующие в качестве факторов вирулентности (болезнетворности).
  • Фузобактерии – палочковидные облигатные (выживающие только в отсутствие кислорода) анаэробные бактерии, обитают на слизистой оболочке рта и кишечника, могут быть неподвижными или подвижными, содержат сильный эндотоксин.
  • Пептострептококки – сферические бактерии, расположены по две, четыре, неправильныи скоплениями или цепочками. Это безжгутиковые бактерии, спор не образуют. Пептококки – род сферических бактерий, представленных одним видом P.niger. Расположены поодиночке, парами или скоплениями. Жгутиков у пептококков нет, спор они не образуют.
  • Вейонеллы – род диплококков (бактерии кокковой формы, клетки которых располагаются парами), расположенных в виде короткими цепочами, неподвижны, спор не образуют.
  • Другие неклостридиальные анаэробные бактерии, которые выделяют из инфекционных очагов больных — пропионовые бактерии, волинеллы, роль которых менее изучена.

Клостридии – род спорообразующих анаэробных бактерий. Клостридии обитают на слизистых желудочно-кишечного тракта. Клостридии в основном патогенны (болезнетворны) для человека. Они выделяют специфические для каждого вида высокоактивные токсины. Возбудителем анаэробной инфекции может быть как один вид бактерий, так и несколько видов микроорганизмов: анаэробно-анаэробной (бактероиды и фузобактерии), анаэробно-аэробной (бактероиды и стафилококки, клостридии и стафилококки)

Аэробы - организмы, которым для жизнедеятельности и размножения необходим свободный кислород. В отличие от анаэробов у аэробов кислород участвует в процессе выработки необходимой им энергии. К аэробам относятся животные, растения и значительная часть микроорганизмов, среди которых выделяют.

  • облигатных аэробов – это «строгие» или «безусловные» аэробы, получают энергию только из окислительных реакций с участием кислорода; к ним относятся, например, некоторые виды псевдомонад, многие сапрофиты, грибы, Diplococcus pneumoniae, дифтерийные палочки
  • в группе облигатных аэробов можно выделить микроаэрофилов – для жизнедеятельности им необходимо низкое содержание кислорода. При попадании в обычную внешнюю среду такие микроорганизмы подавляются или гибнут, поскольку кислород отрицательно влияет на действие их ферментов. К ним относятся, например, менингококки, стрептококки, гонококки.
  • факультативные аэробы – микроорганизмы, которые могут развиваться и при отсутствии кислорода, например, дрожжевая палочка. К этой группе относится большинство патогенных микробов.

Для каждого аэробного микроорганизма существует свой минимум, оптимум и максимум концентрации кислорода в окружающей его среде, необходимой для его нормального развития. Повышение содержания кислорода за границу «максимум» ведёт к гибели микробов. Все микроорганизмы гибнут при концентрации кислорода 40-50%.

Оглавление темы "Перенос веществ в бактериальной клетке. Питательные субстраты бактерий. Энергетический метаболизм бактерий.":
1. Активный перенос веществ в бактериальной клетке. Транспорт веществ обусловленный фосфорилированием. Выделение веществ из бактериальной клетки.
2. Фермент. Ферменты бактерий. Регуляторные (аллостерические) ферменты. Эффекторные ферменты. Определение ферментативной активности бактерий.
3. Питательные субстраты бактерий. Углерод. Аутотрофия. Гетеротрофия. Азот. Использование неорганического азота. Ассимиляционные процессы в клетке.
4. Диссимиляционные процессы. Использование органического азота в клетке. Аммонификация органических соединений.
5. Фосфор. Сера. Кислород. Облигатные (строгие) аэробы. Облигатные (строгие) анаэробы. Факультативные анаэробы. Аэротолерантные бактерии. Микроаэрофильные бактерии.
6. Ростовые факторы бактерий. Ауксотрофы. Прототрофы. Классификация факторов стимулирующих рост бактерий. Пусковые факторы роста бактерии.
7. Энергетический метаболизм бактерий. Схема идентификации неизвестной бактерии. Экзэргонические реакции.
8. Синтез (регенерация) АТФ. Получение энергии в процессе фотосинтеза. Бактерии фототрофы. Реакции фотосинтеза. Стадии фотосинтеза. Световая и темновая фаза фотосинтеза.
9. Получение энергии при окислении химических соединений. Бактерии хемотрофы. Получение энергии субстратным фосфорилированием. Брожение.
10. Спиртовое брожение. Гомоферментативное молочнокислое брожение. Гетероферментативное брожение. Муравьинокислое брожение.

Фосфор. Сера. Кислород. Облигатные (строгие) аэробы. Облигатные (строгие) анаэробы. Факультативные анаэробы. Аэротолерантные бактерии. Микроаэрофильные бактерии.

Фосфор

В клетках бактерий фосфор присутствует в виде фосфатов (преимущественно фосфатов Сахаров) в составе нуклеотидов и нуклеозидов. Фосфор также входит в состав фосфолипидов различных мембран. Фосфаты играют особую роль в энергетическом обмене, расщеплении углеводов и в мембранном транспорте. Ферментативный синтез ряда биополимеров может начаться только после образования фосфорных эфиров исходных соединений (то есть после их фосфо-рилирования). Основной природный источник фосфора для бактерий - неорганические фосфаты и нуклеиновые кислоты. Они присутствуют в составе бульонов, в синтетические питательные среды их вносят дополнительно.

Сера

Сера входит в состав некоторых аминокислот (цистеин, метионин), витаминов (биотин, тиамин), пептидов (глутатион) и белков; участвует в синтетических процессах в восстановленном состоянии - в виде R-SH-групп, обладающих высокой реакционной способностью и легко дегидрирующих в R-S-S-R"-группы. Последние используются для образования более сложных соединений, соединённых дисульфидными (S-S) мостиками. Гидратирование этих соединений восстанавливает их и разрывает мостики. Подобные реакции имеют важное значение для регуляции окислительно-восстановительного потенциала в цитоплазме бактерий. Основной серосодержащий компонент бактериальной клетки - цистеин, в состав которого сера входит в виде тиоловой (-SH) группы. Так, сера в составе метионина, биотина, тиамина и глутатиона происходит из тиоловой группы цистеина. Хотя сера входит в состав аминокислот и белков в восстановленной форме, большинство бактерий утилизирует серу в форме сульфатов . Перевод окисленной серы из сульфат-иона в восстановленную форму в тиоловой группе известен как ассимиляционная сульфатредукция .

У значительно меньшего числа бактерий (например, анаэробных бактерий рода Desulfovibrio) происходит диссимиляционная сульфатредукция , при которой сульфаты, сульфиты или тиосульфаты используются как терминальные акцепторы электронов. При этом образуется сероводород (H2S), как продукт восстановления. Способность бактерий выделять сероводород применяют на практике как дифференциально-диагностический признак. Отдельные группы бактерий (например, серобактерии родов Beggiatoa, Thiothrix) могут окислять сероводород и элементную серу до сульфатов.

Кислород

Кислород , входящий в состав органических веществ бактерий, включается в них двояким путём: опосредованно (из молекул воды либо из С02) и непосредственно. Специальные ферменты - оксигеназы - включают кислород (О2-) в органические соединения непосредственно из молекулярного кислорода (02). Оксигеназы необходимы для разложения многих веществ (например, ароматических углеводородов), трудно поддающихся действию других ферментов. Многие бактерии удовлетворяют свои энергетические потребности за счёт дыхания, в процессе которого кислород выступает в качестве терминального акцептора электронов и протонов в дыхательной цепи. В соответствии с потребностями в молекулярном кислороде бактерии разделяют на пять основных групп.

Облигатные (строгие) аэробы способны получать энергию только путём дыхания и поэтому обязательно нуждаются в молекулярном кислороде. К строгим аэробам относят, например, представителей рода Pseudomonas.

Облигатные (строгие) анаэробы . Рост таких бактерий может быть остановлен даже при низком р02 (например, при 10"s атм), поскольку у них отсутствуют ферменты, расщепляющие токсические соединения кислорода (каталазы, супероксид дисмутазы). К облигатным анаэробам относят роды Bacteroides, Desulfovibrio.

Факультативные анаэробы растут как в присутствии, так и в отсутствии 02. К факультативным анаэробам относят энтеробактерии и многие дрожжи, способные переключаться с дыхания в присутствии 02 на брожение в отсутствии 02.

Аэротолерантные бактерии способны расти в присутствии атмосферного кислорода, но не использовать его в качестве источника энергии. Энергию аэротолерантные бактерии получают исключительно с помощью брожения (например, молочнокислые бактерии).


Микроаэрофильные бактерии хотя и нуждаются в кислороде для получения энергии, лучше растут при повышенном содержании С02, поэтому они также известны как «капнофильные микроорганизмы» [от грсч. kapnos, дым, + philos, любовь1. К микроаэрофилам относят большинство аэробных бактерий (например, бактерии родов Campylobacter и Helicobacter). Бактерии могут существовать в среде, содержащей кислород только при наличии толерантности к кислороду, которая связана со способностью бактериальных ферментов нейтрализовать токсичные соединения кислорода. В зависимости от количества электронов, одновременно переносимых на молекулу 02, образуются: ион пероксида 02 (образуется флавиновыми оксида-зами при переносе 2е"), супероксид-радикал (могут образовать ксантин оксидаза, альдегид ок-сидаза, НАДФН-оксидаза при переносе 1е-), и гидроксил-радикал (продукт реакции супероксид-радикала с перекисью водорода). В детоксикации реактивных кислородных радикалов участвуют супероксид дисмутаза, пероксидаза и каталаза.

Супероксид дисмутаза конвертирует супероксид-радикал (наиболее токсичный метаболит) в Н202. Фермент присутствует в аэробных и аэротолерантных бактериях. Катализа превращает Н202 в Н20 и 02 Фермент имеется у всех аэробных бактерий, но отсутствует у аэротолерантных организмов.

Строгие анаэробы обычно каталаза - и супероксиддисмутаза -отрицательны.

Пероксидаза . Из всех каталаза-отрицательных микроорганизмов лишь молочнокислые бактерии способны расти в присутствии воздуха. Их аэротолерантность связана со способностью накапливать пероксидазу . Фермент нейтрализует Н202 в реакции с глутатионом; при этом перекись водорода превращается в воду.

Получают энергию либо путем ферментации (при этом конечными акцепторами электронов являются органические соединения), либо путем анаэробного дыхания, при котором акцептором электронов являются неорганические кислородсодержащие соединения (нитраты, сульфаты, СО2). Облигатные анаэробы культивируют в бескислородных условиях или при низком парциальном давления кислорода. При наличии кислорода облигатные анаэробы погибают. Толерантность бактерий к кислороду зависит от наличия супероксиддисмутазы, каталазы и пероксидазы, инактивирующих токсичный для анаэробов кислород.

Облигатные неспорообразующие (неклостридиальные) анаэробы - многочисленная группа бактерий , относящихся к различным родам и семействам. Представлены грамположительными и грамотрицательными палочками, кокками, а также извитыми и ветвящимися формами. Большинство из них являются условно-патогенными бактериями, преобладающими в нормальной микрофлоре человека и животного. Инфекции, вызываемые неклостридиальными анаэробами , развиваются чаще всего у иммунокомпромиссных больных как оппортунистические эндогенные инфекции (аутоинфекции).

Материал для исследования - гной или пораженная ткань, кровь. Проводят бактериоскопию, в т. ч. люминесцентную микроскопию , и бактериологическое исследование в условиях анаэробиоза. Посевы помещают в анаэростат или анаэробоксы. Для ускоренного обнаружения анаэробов применяют газожидкостную хроматографию, ИФА, РИФ и др. Обязательна антибиотикограмма. В ММА им. И. М. Сеченова предложены флюоресцентный и лазерно-флюоресцентный методы экспресс- диагностики гнойно-воспалительных заболеваний, вызываемых анаэробами .

При флюоресцентном методе обнаружения анаэробов в биологическом субстрате исследуемый материал (гной, первичный посев, чистая культура) облучают светом с длиной волны 400-420 нм. Наблюдение ведут через запирающий желтый фильтр. При наличии анаэробов или их продуктов наблюдают малиново-красную флюоресценцию.

Лазерно-флюоресцентный метод позволяет обнаружить анаэробы в субстрате или непосредственно в организме. Эти методы значительно сокращают сроки диагностики и выбора целенаправленного лечения.

Микробиологическая диагностика . Материалом для исследования может быть сыворотка крови пациента и отделяемое из пораженных органов (лаважная жидкость, мокрота и т. п.). Серологический метод: ИФА и РИФ - для выявления антигена ; РПГА и ИФА - для выявления антител . Бактериологический метод применяется для выявления урогенитальных микоплазм. Посевы на плотных средах просматривают при малом увеличении на 3-5-е сутки инкубации. Молекулярно-генетический метод: ПЦР , ДНК-ДНК-гибридизация.

Рис. 3.124.

Таблица 3.50. Факторы вирулентности неспорообразующих (неклостридиальных) анаэробных бактерии (НАБ)

Факторы вирулентности Биологический эффект Бактерии

эндотоксин

Общетоксическое повреждающее действие на органы и ткани

Грамотрицательные НАБ

лейкоцидин

Повреждает лейкоциты

Бактероиды, фузобактерии

гемолизин

Лизирует эритроциты

Fusobacterium necrophorum

гемагглютинин

Склеивает эритроциты

Fusobacterium necrophorum

Ферменты

коллагеназа

Разрушает коллагеновые волокна соединительной ткани

Bacteroides fragilis, фузобактерии

нейраминидаза

Разрушает гликопротеины, содержащие нейраминовую кислоту

Prevotella melaninogenica

дезоксирибонуклеаза

Вызывают внутрисосудистые изменения из-за повышенной свертываемости крови при разрушении гепарина

Бактероиды гепариназа

фибринолизин

Растворяет тромб, способствует развитию септического тромбофлебита

Бактероиды

бета-лактамаза

Разрушает бета-лактамные антибиотики

Бактероиды

Структуры

Адгезия к субстрату

Грамотрицательные НАБ

Защищает бактерии от фагоцитоза

Бактероиды

Метаболиты

летучие и длинноцепочечные жирные кислоты

Угнетают хемотаксис и кислородзависимую цитотоксичность лейкоцитов

Большинство НАБ

Анаэробы - организмы, получающие энергию при отсутствии доступа кислорода путем субстратного фосфорилирования. Термин «анаэробы» ввел Луи Пастер, открывший в 1861 году бактерии маслянокислого брожения.

Все микроорганизмы по типу дыхания делят на аэробные и анаэробные. Анаэробное дыхание - совокупность биохимических реакций, протекающих в клетках живых организмов при использовании в качестве конечного акцептора протонов не кислорода, а других веществ (например, нитратов) и относится к процессам энергетического обмена (катаболизм, диссимиляция), которые характеризуются окислением углеводов, липидов и аминокислот до низкомолекулярных соединений.

Если организм способен переключаться с одного метаболического пути на другой (например, с анаэробного дыхания на аэробное и обратно), то его условно относят к факультативным анаэробам. До 1991 года в микробиологии выделяли класс капнеистических анаэробов, требовавших пониженной концентрации кислорода и повышенной концентрации углекислоты (Бруцеллы бычьего типа - B. abortus). Умеренно-строгий анаэробный организм выживает в среде с молекулярным O2, однако не размножается. Микроаэрофилы способны выживать и размножаться в среде с низким парциальным давлением O2. Если организм не способен «переключиться» с анаэробного типа дыхания на аэробный, но не гибнет в присутствии молекулярного кислорода, то он относится к группе аэротолерантных анаэробов. Например, молочнокислые и многие маслянокислые бактерии. Облигатные анаэробы в присутствии молекулярного кислорода O2 гибнут - например, представители рода бактерий и архей: Bacteroides, Fusobacterium, Butyrivibrio, Methanobacterium). Такие анаэробы постоянно живут в лишенной кислорода среде. К облигатным анаэробам относятся некоторые бактерии, дрожжи, жгутиковые и инфузории.

Токсичность кислорода и его форм для анаэробных организмов

Среда с содержанием кислорода является агрессивной по отношению к органическим формам жизни. Это связано с образованием активных форм кислорода в процессе жизнедеятельности или под действием различных форм ионизирующего излучения, значительно более токсичных, чем молекулярный кислород O2. Фактор, определяющий жизнеспособность организма в среде кислорода - наличие у него функциональной антиоксидантной системы, способной к элиминации: супероксид-аниона (O2−), перекиси водорода (H2O2), синглетного кислорода (O), а также молекулярного кислорода (O2) из внутренней среды организма. Наиболее часто подобная защита обеспечивается одним или несколькими ферментами: супероксиддисмутаза, элиминирующая супероксид-анион (O2−) без энергетической выгоды для организма; каталаза, элиминирующая перекись водорода (H2O2) без энергетической выгоды для организма; цитохром - фермент, отвечающий за перенос электронов от NAD H к O2. Этот процесс обеспечивает существенную энергетическую выгоду организму. Аэробные организмы содержат чаще всего три цитохрома, факультативные анаэробы - один или два, облигатные анаэробы не содержат цитохромов. Дополнительная антиоксидантная защита может обеспечиваться синтезом или накоплением низкомолекулярных антиоксидантов: витамина С, А, E, лимонной и других кислот.

Анаэробные микроорганизмы являются нормальной микрофлорой тела человека, в то же время в 30-100% случаев они могут быть причиной гнойно-воспалительных заболеваний.

Заподозрить наличие анаэробных бактерий в исследуемом материала нужно при следующих критериях: Плохой запах исследуемого образца, Локализация инфекции вблизи слизистой оболочкой, Инфекция после укуса человека или животного, Газ в исследуемом материале, Предшествующее лечение лекарственными средствами, малоактивными в отношении анаэробов (антибиотики: аминогликозиды, старые хинолоны, триметоприм), Черное окрашивание содержащих кровь экссудатов, Наличие «серных гранул» в выделениях, Уникальная морфология при окраске по Граму, Отсутствие роста в аэробных условиях микроорганизмов, увиденных в микропрепаратах из экссудата, Рост в анаэробной зоне питательной среды, Анаэробный рост на селективных средах для анаэробов, Характерные колонии на чашках с анаэробным агаром, Флуоресценция колоний в ультрафиолетовом свете.

Микробиологическая диагностика. В настоящее времяосновными методами диагностики являются бактериологический с расширенной идентификацией по биохимическим свойствам, а также газовая хроматография (хемотаксономия) и ПЦР (генодиагностика).

Культивирование анаэробных организмов. Для культивирования анаэробов применяют особые методы, сущность которых заключается в удалении воздуха или замены его специализированной газовой смесью (или инертными газами) в герметизированных термостатах - анаэростатах. Другим способом выращивания анаэробов (чаще всего микроорганизмов) на питательных средах - добавление редуцирующих веществ (глюкозу, муравьинокислый натрий, казеин, сульфат натрия, тиосульфат, цистеин, тиоглюконат натрия и др.), связывающих токсичные для анаэробов перикисные соединения.

Общие питательные среды для анаэробных организмов. Для общей среды Вильсона - Блера базой является агар-агар с добавлением глюкозы, сульфита натрия и двуххлористого железа. Клостридии образуют на этой среде колонии чёрного цвета за счет восстановления сульфита до сульфид - аниона, который соединяясь с катионами железа (II) дает соль чёрного цвета. Как правило, черные на этой среде образования колонии, появляются в глубине агарового столбика. Среда Китта - Тароцци состоит из мясопептонного бульона, 0,5% глюкозы и кусочков печени или мясного фарша для поглощения кислорода из среды. Перед посевом среду прогревают на кипящей водяной бане в течение 20 - 30 минут для удаления воздуха из среды. После посева питательную среду сразу заливают слоем парафина или вазелинового масла для изоляции от доступа кислорода. GasPak - система химическим путем обеспечивает постоянство газовой смеси, приемлемой для роста большинства анаэробных микроорганизмов. В герметичном контейнере, в результате реакции воды с таблетками боргидрида натрия и бикарбоната натрия образуется водород и диоксид углерода. Водород затем реагирует с кислородом газовой смеси на палладиевом катализаторе с образованием воды, уже вторично вступающей в реакцию гидролиза боргидрида. Данный метод был предложен Брюером и Олгаером в 1965 году. Разработчики представили одноразовый пакет, генерирующий водород, который был позднее усовершенствован ими до саше, генерирующих двуокись углерода и содержащих внутренний катализатор.

Классификация анаэробных бактерий базируется на принципах генотипической гомологии, позволяющей определить филогенетическое родство, кроме того все анаэробы можно классифицировать по морфологии и отношению к окраске по Граму.

Грамположительные: палочки (Clostridium, Bifidobacterium, Lactobacillus, Mobiluncus), кокки (Anaerococcus, Peptococcus, Peptostreptococcus, Coprococcus). Грамотрицательные: палочки (Bacteroides, Porphyromonas, Prevotella, Fusobacterium, Leptotrichia), кокки (Acidaminococcus, Veillonella, Megasphaera).

Рассмотрим представителей основных таксономических групп, имеющих важное медицинское значение.

Грамположительные спорообразующие палочки.

Спорообразующие бактерии рода Clostridium

Спорообразующие анаэробы рода Clostridium насчитывают свыше 150 видов. Споры округлой или овальной формы, располагаются в центре клетки субтерминально или терминально в зависимости от видовой принадлежности микроба. Поперечник споры обычно больше поперечника клетки, поэтому клетка, содержащая спору, выглядит раздутой и напоминает веретено (от лат, clostridium - веретено). Эти бактерии при наличии благоприятных условий способны вызывать у человека газовую гангрену, столбняк, ботулизм, псевдомембранозный язвенный энтероколит, пищевые отравления и другие заболевания, связанные с клостридиальным поражением различных органов и систем.

а) бактероиды

б) клостридии

в) бифидобактерии

162. Ферменты постоянно синтезирующиеся в микробных клетках:

г) конститутивные

163. Ферменты, синтез которых зависит от наличия субстрата:

а) индуцибельные

164. По типу питания клинически значимые виды микроорганизмов:

г) хемогетеротрофы

165. По типу дыхания клинически значимые микроорганизмы в основном:

г) факультативные анаэробы

166. Фазы развития бактериальной популяции (к р о м е):

д) бинарное деление

167. Избирательное поступление веществ в бактериальную клетку, в основном, обеспечивает:

168. Бактерии по типу дыхания (к р о м е):

а) микроаэрофилы

б) облигатные анаэробы

в) облигатные аэробы

г) факультативные анаэробы

169. Способы размножения прокариот (к р о м е):

170. Способ размножения бактерий:

б) бинарное деление

171. Бактерии наиболее биохимически активны в:

б) логарифмической фазе

172. Бактерии наиболее чувствительны к антибиотикам в:

б) логарифмической фазе

173. Механизмы поступления веществ в бактериальную клетку (к р о м е):

д) фагоцитоз

174. Поступление веществ в бактериальную клетку без затраты энергии происходит при:

б) простой диффузии

175. Микроорганизмы, нуждающиеся в меньшей концентрации 0 2 , чем его содержание в воздухе:

г) микроэрофилы

176. Способность анаэробных микроорганизмов существовать в присутствии свободного 0 2

б) аэротолерантность

177. Тип метаболизма облигатных анаэробов:

б) бродильный

178. Тип метаболизма факультативно-анаэробных микроорганизмов:

в) окислительный, бродильный

179. Способы создания анаэробиоза (к р о м е):

д) генотипический

180. Для создания анаэробиоза физическим способом используют:

б) анаэростат

181. Физические методы создания анаэробиоза основаны на:

а) механическом удалении кислорода

182. Для создания анаэробиоза химическим способом используют:

б) метод Биттнера

183. Химические методы создания анаэробиоза основаны на:

б) использовании химических сорбентов

184. Для создания анаэробиоза биологическим способом используют:

д) метод Фортнера

185. Для создания анаэробиоза комбинированным способом используют (к р о м е):

д) метод Биттнера

186. Облигатные анаэробы:

в) клостридии

187. В биологическом методе Фортнера для удаления кислорода используют:

г) сарцину

188. Цель П этапа бак.метода:

в) накопление чистой культуры

189. Цель III этапа бак.метода:

г) идентификация чистой культуры

190. На III этапе бак.метода:

г) определяют видовые свойства и антибиотикограммы

191. Целью микроскопии культуры на III этапе бак.метода является определение:

а) морфологической и тинкториальной однородности

192. Подвижность бактерий определяют:

б) при посеве уколом в столбик полужидкогоагара

193. Принцип определения биохимической активности бактерий:

194. Принцип определения биохимической активности бактерий:

б) определение промежуточных и конечных продуктов метаболизма

195. Для определения биохимических свойств микроорганизмов используют (к р о м е):

г) культуры клеток ткани

196. О сахаролитической активности бактерий свидетельствует:

в) образование кислых и газообразных продуктов метаболизма

197. Сахаролитические свойства бактерий определяют на среде:

198. Протеолитические свойства бактерий определяют на средах с (к р о м е):

в) углеводами

199. Критерий учёта при определении протеолитических свойств бактерий на МПБ:

г) образование сероводорода, индола

200. О чистоте культуры на III этапе бак.метода свидетельствует:

в) однородность роста и однотипность микроорганизмов в мазке

201. Чистая культура –это популяция бактерий одного:

202. Популяция бактерий одного вида:

б) чистая культура

203. Определение антибиотикограмм культур вызвано:

г) приобретением лекарственной устойчивости

204. Определение антибиотикограмм культур вызвано:

б) приобретением лекарственной устойчивости

205. При определении антибиотикограммы методом дисков (кроме):

б) засевают культуру методом «штрих с площадкой»

206. Определение антибиотикограммы проводят (к р о м е):

г) для идентификации микроорганизмов

207. Основной таксон прокариот:

208. Вид – это популяция микроорганизмов сходных по (к р о м е):

д) половому пути размножения

209. Внутри вида микроорганизмы могут отличаться по (к р о м е):

б) способности к спорообразованию

210. Внутри вида микроорганизмы могут отличаться по (к р о м е):

а) окраске по Граму

211. Таксоны прокариот (к р о м е):

212. Вид – это популяция микроорганизмов сходных по (к р о м е):

д) чувствительности к антибиотикам

213. Для идентификация микроорганизмов по Берджи определяют (к р о м е):

б) чувствительность к антибиотикам

214. Основной принцип идентификации бактерий по Бержди:

в) строение клеточной стенки и отношение к окраске по Граму

215. Ферменты микроорганизмов обеспечивают (к р о м е):

д) морфологию

216. Ферменты микроорганизмов определяют по разложению:

в) соответствующего субстрата

217. По назначению питательные среды «пестрого ряда»:

б) дифференциально-диагностические

218. Цель III этапа бак.метода:

в) идентификация чистой культуры

219. На III этапе бак.метода проводят (к р о м е):

д) отбор изолированных колоний

220. Цель II этапа бак.метода выделения возбудителей анаэробных раневых инфекций при исследовании почвы:

б) получение изолированных колоний

221. Выделение чистой культуры анаэробов осуществляется по методу:

б) Цейсслера

222. Выделение чистой культуры анаэробов осуществляется по методу:

б) Вейнберга

223. Возможные спорообразующие возбудители анаэробных инфекций в почве:

в) клостридии газовой гангрены


| | 3 | | | |